S I e e e
(NASA-CR-124166) SURVEY OF DIGITAL N73-20256
FILTERING Final MmOu:pan Repecrt, 17 “ ,
Jun. 1965 - 15 Oct. 1972 (Auburn Univ.) !
411 p HC $22.75 ,z cser ogc .

e e i e 0o 17 350

ELECTRICAL

nt of Commerce

S Deparime
v Springfield, VA. 22151

20
US>
1 Z

i ; H.w:m

| W7
..WMM
st
1322

sZZ

ENGINEERING EXPERIMENT STATION
AUBURN UNIVERSITY
AUBURN, ALABAMA

Electrical Engineering
207 Dunstan Hall

AUBURN UNIVERSITY

| ALABAMA

36830

SCHOOL OF ENGINEERING

March 20, 1973

National Aeronautics and Space Administration
George C. Marshall Space Flight Center
Huntsville, Alabama 35812

Dear Sir:

Progress in the assigned area of work is as follows:

RE: Contract NAS8-~26580
Monthly Progress Report
February 5, 1973 to

March 5, 1973

Feasibility Study of Reaction Control Systems

Task 1.

(Huntsville Contact: C. Rupp)
M. Polites

Telephone 826-4330
Area Code 205

Additional effort is being devoted to formalizing a method of

estimating the error-time response for the class of MRAS systems
In addition, a general set of conditions
governing a class of coupled MRAS systems is being outlined.

studied previously.

a new 16 engine model has been developed and is presently under

Task 2. (a).
study.

(b).
JSB/vht

Using a torque axis transformation design procedure

Study of the optimal CMG control law is continuing.

Sincerely yours,

Jeagh P Bled

Joseph S. Boland, III

Project Leader

A LAND-GRANT WUNIVERSITY

Vrl !

FINAL TECHNICAL REPORT

SURVEY OF DIGITAL FILTERING
. PREPARED BY
DIGITAL SYSTEMS LABORATORY -

ELECTRICAL ENGINEERING

H. TROY NAGLE, JR
PROJECT LEADER

OCTOBER, 1972

CONTRACT NAS8-20163
GEORGE C. MARSHALL SPACE FLIGHT CENTER
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
HUNTSVILLE, ALABAMA

APPROVED:BY: SUBMITTED BY:

7

H. Troy Ndgle, Jr.
sociate Professor and Head Associate Professor
Electrical Engineering Electrical Engineering

PRECEDING PAGE BLANK NOT FILMED!

FOREWORD

This is a technical summary reporting the'prbgress of a study
conducted by the Electrical Engineering Department of Auburn University
during the period 17 June 1965 through 15 October 1972. This study
report completes Contract No. NAS8-20163, granted té Engineering
Experiment Station, Auburn, Alabama, by George C. Marshall Space Flight

Center, National Aeronautics and Space Administration, Huntsville,

Alabama.

ii

ACKNOWLEDGEMENT

The author wishes to recognize the following list of Faculty
and Graduate Students who participated in this study during its
various stages
Faculty:

Chester C. Carroll, Project Leader, 1965-1970

H. Troy Nagle, Jr., Project Leader, 1970-1972

Graduate Students:

J. R. Heath Quitman Liner
Ronald White Roger Cole

J. W. Jones J. L. Raley

W. L. Oliver John A. Childs
G. E. Jordan David Kimsey
H. H. Hull LeRoy Bearnson
H. Troy Nagle, Jr. R. H. Robison

1ii

SURVEY OF DIGITAL FILTERING

H. Troy Nagle, Jr.

ABSTRACT

A three part survey is ﬁade of the state-of-the-art in digital
filtering. Part one presents background material including sampled-
data transformafions_and the discrete Fourier transform. Part two,
digital filter theory, gives an in-depth coverage of filter categories,
transfer function synthesis, quantization and other non-linear errors,
filter structures and computer aided design. Part three presents
hardware mechanization techniqﬁes. Implementation by general-purpose,

mini-, and special-purpose computer are presented.

iv

SURVEY OF

DIGITAL FILTERING

Part
1. Background
2. Digital Filter Theory

3. Mechanization of Digital
Filters

PART ONE

BACKGROUND

IT.

ITI.

Iv.

PART ONE: BACKGROUND
TABLE OF CONTENTS

Introduction to Digital Filtering

A. The Computer Model. « « « « &
Bc The Z—Domain MOdel. P e o e & = o @
C. Scope of Digital Filtering.

Standard z-Transform. « « ¢ « ¢« o o« « o &

A. Impulse Sampling. . « ¢« ¢« v ¢ ¢ ¢ « &
B. Hold DevicesS. ¢« « « « &+ « o « o o » &
C. Discrete Transfer Functions
D. Difference Equations. . « « « « « . .
E. Mapping Function. . . +« « ¢« « &« « + &
F. Frequency Response. . . « « o« s« '« o« &

Sampled Data Transformations. . . . coe s

A. Approximation Techniques.
1. Backward Difference
2. Forward Difference. . . + « « .
3. Rectangular Rule. « . .« .

a. Left Side . + . . ¢« ¢« « ¢« ¢ o o

b. Right Side.
4. Trapezoidal Rule. . . « « « + &
5. Simpson's Rule. « « « ¢« + ¢« + « .
6. Impulse Invariance. « . « « .« .
7. Impulse Invariant Integrator. . .
B. Mapping Functions Summary
1. Standard z-Transform.
2, Backward Difference . . « « « . .
3. Forward Difference. . « . « + . .
4., Bilinear z-Transform.
5. Matched z-Transform.. . . .
C. Other Transforms. . . « « « « « &
1. Simpson's Rule. . . . « « « o .
2. (w, v)«Transform. . « « « « + .

Discrete State Variables. . . . « « « .+ .

1-ii

1-11
1-14

. 1-16

1-19
1-22

1-23

1-23
1-23
1-28
1-30
1-30
1-32
1-33
1-34
1-34
1-36
1-38
1-38
1-38
140

. 1-40
. 1-45
. 1-46
. 1-46

1-46

1-48

V. Convolution. . . . « « .« « .

AO
B.

Continuous Linear Systems.
Discrete Linear Systems. .

VI. Discrete Fourier Transform . .

A.
B.

Continuous Fourier Transform

Discrete Fourier Transform
1. Sampling Process . .

2. DFT Derivation
3. IDFT Derivation. . . .
4. DFT Pairs.
Fast Fourier Transform .

1. Calculation Time . . .
2. FFT Derivation
3. 1IFFT Derivation. . . .

VII. Random Processes . . . « « o o

A‘
B.

REFERENCES

Continuous Processes . .
Discrete Processes

1-iii

I. INTRODUCTION TO DIGITAL FILTERING

Digital Filtering may be described as the process by which input
discrete-time sequences of numbers with discrete amplltudes are trans-
formed into output discrete-time sequences of numbers with discrete
amplitudes. The transformation process (the digital filter) may be
described as a set of difference equations which may be programmed on
a general-purpose computer, or realized with specially designed devices.

The Computer Model

An example digital filter is shown in Fig. 1. The input signal
e;(t) is in analog form'anc is sampled every T seconds by an Analog-
to-Digital Converter (A/D). The input samples e; (nT), n an integer, are
in binary 2's complement formvand are supplied to the computing device,
which may be a general-purpose or special-purpose computer. The com-

puting device is programmed to calculate the filter output samples eq(nT)

which are fed to an output hold register. This register may actuelly be
considered to be part of the computing device. The cutput samples'eo(nT)
are held in the register until a new output sample is calculated‘and sup-
plied to the output hold register. The D/A converter produces an ana-
log output signal eo(t)'ﬁhose characteristic form is shown in Fig. 2.

The digital filter of Fig. 1 operates as follows: A pulse from the
digital filter control unit at t=nT instructs the A/D to calculate
e; (nT). However this sampled value of e;(t) is not available to the

computing device until time nT.-+ Ta, where Ta is the total A/D
1-1

1-2

(3)% &—o

v/d

(Tu)©s

I93TTF Te3r8p v 1T *8Wd

STYNDIS TVIIDIQ INASHIAA SINIT dT900d
STVNDIS DOTVNV INISMIJAY SINIT AONIS :IILON

FILSIOM IOINIQ
T108 | ONIINAROD v e (3)Fe
114100 BLAA B

anduy

(zw)¥o

1-3

eo(nT+2T) 4 — — — — = — - - ———
eoT+T) —|————— ———_———— — _
eo(nT-T) - === ==

eo(nT-2T) —f— —— —

e (nT) '

|
I
I
i
|
|
I
1

] e o e e o —

N o e e e o —
1.
L]

=}
=
U
L=
=]

nT nT+T nT+2T

Fig. 2. The analog output eb(t).

1-4

conversion time. Once the input sample has arrived at the computing
device, the output sample is calculated and sent to the output hold
device at t=nT+TatTc, where Tc is the computing time. Thus the output
e,(nT) is actually ey(nT+Ta+Tc). With modern technology, TatTc can be
designed to take less than lus. Hence for sampling rates of up to
200KHz(T=5us), T is much greater than Ta+Tc and hence,

e, (nT+Tat+Tc) = eo(nT).

The z-Domain Model

The digital filter of Fig. 1 has been examined and described from
a hardware or functional point of view. A mathematical model for this
filter is shown in Fig. 3 which employs the well known z-transform.
Fig. 3a demonstrates a discreteﬁlime model for the digital filter where
the switches labeled T represent impulse samplers and the block labeled

G,o(s) represents a "zero-order hold" device. Fig. 3b illustrates the
transfer function representation of the computing device itself. Fig.
3 differs from Fig. 1 in that the computing device of Fig. 1 uses the
amplitude of the input (and output) samples to calculate new output
samples eo(nt); Fig. 3 uses impulse functions weighted by the amplitude
of the input (and output) samples to calculate new output impulses
eo*(t). The impulse samples, zero-hold, and z-transform will be dis-
cussed in more detail later.
Scope of Digital Filtering
The.digital filter models presented above were for conventional one-

. dimensional processing of a single input variable. Although this con-

cept of digital filtering is most widely accepted, many other researchers

1-5

A/D
F==—"7 v .
! : - - Cowputing Pevice — | |_-2/£:__..|
|
| 1 » | | i
| [| |- | i
E; (s) it .:_:_ G(s) R R N
| 181 (2) ko (2) |
| joo ! ! i
| ! N
:]
- (a) Model of entire filter
E; (2) 7 = G(z) - Eo(2)

(b) Model of computing device

Fig. 3. Mathematical model of

the'digital filter.

have applied the label to more general schemes. Digital filtering in the
last few years has come to also mean optimal state estimation, discrete
qurier transformation, high speed convolution, non-linear discrete
filtering, two~dimension image processing, random and multirate sampling,
block recursion, least-mean squares filtering, quantization optimization,
computer programming, and hardware implementation. All of these topics,
and others, will be introduced in what follows. Emphasis will be, how-
ever, on the standard case of linear, one-dimensional digital filtering.
A prerequisite to understanding the theory of digital filtering is a
mathematical background in sampled-data transforms, Fourier transforms,
convolution, discrete state variables and stocastic processes. Hence,

these topics are now reviewed briefly.

II. STANDARD Z-TRANSFORM
The ﬁost common sampled-data transformation is called the standard
"z-transform. It is used to describé both the sampling process for the
digital filter input signal and the discrete transfer function of the
filter itself.

Impulse Sampling

The z¥transform is used to represent mathematically a discrete-
time system. The discrete-time intervals are produced by periodic
impulse samplers. Consider Fig. 4.. The Laplace transfer fdnction G(s)
is an analog filter; its input is a Dirac delta function. The filter
output g(t) is periodically impulse sampled every Tbseconds.. The

sampled output may be expressed as

g*(t) = g(t) I § (£-kT)
' k=0

(la)

I - g(kT) &(t—kT)

1-7

1-8

CONTINUOUS
FILTER
SAMPLER
© 1
gt |
—3 G(s) : / ; g (t)
{ |
- I _
SAMPLER

gt) —>> g*(t)

Fig. 4. A continuous filter and sampler.

The Laplace transform of g*(t) is

L lex()] = cx(s) = T gm)eXTs
, k=0

If we define z = elS, then

G*(s) =31 g(kT)zk

s = fnz k=0

T

Equationi(lb) 1s the standard z-transform of g(t), or

6(2) & zlg(r)) & ex(s) - I samz
‘ I

Suppose that the analog transfer function G(s) is of the form

m
I
i=1 (s+aj)
G(s)=K
. n
i

371 (@)

(1b)

(2)

(3a)

1-10

Where

-ay complex zeroes of G(s)

complex poles of G(s)

|
o
e
L]

s = ¢ + ju = Laplace variable

tal
n

Constant

n>n

If there are no repeated poles in G(s), then

n
K R (3b)
G(s) = & —K
k-l s+bk

Where Rk is the residue at pole -bk.

Since,

2 =Z -ut = a -
2l s+u] [ae™ut] 1-e~uT -1

The standard z-transform of (3b) results in

G(z) =

Re
k=1

1~-e-bkT,-1 (4)

o~

A third representation of interest is found by noting that multipli-

cation of g(t) andkzo 8§ (t-kT) in the time domain corresponds to con-

® =kTs _
volution of G(s) and o & T l'rs in the frequency domain. After
convolution the result is 1-e

G*(s) = 1/2-g(0+) + 1/T &

k=-o

Gls+iku,) (5)

1-11

where ws=2n/T. Hence it is apparent that G*(s) is.periodic in w, the
sampling frequency. It is required that G(jw) = 0 for | w I > Wg/2 as

shown in fig. 5 so that the fréquency content of G(jw) will be preserved
in the primary strip of G*(jw). If this relationship is preserved the
envelope of G(jw) can be recovered from G*(jw). This phenomenon is
known as frequency aliasing.

The standard z-transform discussed above is best known of the
sampled-data transforms. The theorems and tables of z-transforms can be

found in any standard sampled-data text [1].
Hold Devices:

In the previous section we have seen the sampling process used to
determine values of an input signal at discrete time intervals. The
inverse process of data reconstruction from these sampled signals is
accqmplished by hold devices. Consider the problem of reconstructing the
signal g(t) given samples spaced T seconds apart. If we expand g(t)

in a Taylor's series

g(t) = g(@T) + g' @I (e-nD) + E0D (eumy2 4 |)

for nT < t <t-nT ,

where g'(t) = dg(t)
’ dt L]

The derivatives may.be approximated by

g'(@) = 3 (g(al) - g(aT-1)
)

g'"(nT)

"
= =

(g'-(nT) - g'(nT-T)) s ‘etc.

1-12

—

ﬁ I G(jw) I

Tt o —— —— — g o —

PRIMARY

STRIP
Frequency domain characteristics of G*(s).

Fig. 5.

1-13

v

1f equation (6) is truncated to just one term, this reconstruction is
called a zero-order hold; if the first derivative is included, a first-

order hold; etc.

Zero-Order Hold (1]

The zero-order hold device in the mathematical model of Fig. 3
accepts an impulse modulated input eo*(t) and produces an output egy(t)

as shown in Fig. 2. The input ey*(t) may be expressed as

e *(t) = ; eo(kT) §(t~kT).
k=0

Its Laplace transform is

E *(s) =E (2) = I e (kT)z"¥
o o] ﬁ?o o . *

The output (see Fig. 2) may be written

eo(t) ='°Z° e, (kT) [u(t-kT)~u(t-kT-T)] . (8
' k=0 4

Its Laplace transform is

(- -]

E(s) = I e (¢)[eTXT® - ekT8,~Tsy

k=0 s s
[+ -]
= - kT -
L e (kT)e 18 (l-e TS}
k=0 8

Eo(z) (l:glzfg *

1-14 .

The transfer function of the zero-order hold device is

-Ts
Gy (e) = 2ol 1e | 9)

Eo*ﬁf)

The frequency domain characteristics of Gho(s) are shown in Fig. 6.

Suppose that the sampling interval T is chosen very small. Then,

e T8 1-Ts +0(T2)

£ 1-Ts
Then,

G (s) 3 1UTe) o ' (10)
ho ™" s
This result is verified by noting in Fig.6 that, for w<<w§/2 (or

T small), the magnitude function approaches T; also, the zero-order
hold introduces phaze lag which is linear with frequency into the

system.

Discrete Transfer Functions [1]

In the mathematical model of Fig. 3, the transfer function of the
computing device 1s shown as

Eq(2) EO*(S))
3 = z),

Ej(z) Ey*(s)

From Fig. 3

E, (s) = Ej*(8)G(s).

1-15.

l Gho(jw)

w 2w 3w
s s s

-7

Fig. 6. Gain and phase characteristics
of a zero-order hold.

1-16
Hence,

eo*(t) . [t ei(kT)g(t-kT)] on s(e-3T) .
k=c =

In this expression g{t-kT) may be replaced with g(jT-kT) due to the
Dirac delta function. Next, let £=j-k and replace the summation

index j with £ as follows:

o -
e*(t) = I e (KI) g(iT) 38(t-RT-KT).
2=-% im0

Since g(y) = 0 for y<0, the -k may be replaced by zero. The Laplace

transform of eo*(t) is

~kTs -2Ts

Eo*(s) = [}ioei(kT)e |
= E4*(8) G*(s).

I £ g(aTe]
L=0

Hence, the descrete-time transfer function of the computing device in

Fig. 3 is indeed

Eo*(8) .
CEee T v

Difference Equations [4]

The discrete transfer function of equation (11) is, in general,

the ratio of two polynomials in z"l’

-1 _
80+a12 +...+anz n= Iio(z)

G(2) = (12)

-1 -n

where the coefficients ay and bj are real numbers (can be zero). An

equivalent expression for (12) is the equation

1-17

Eo(z) = aoEi(z) + a z'lEi (z) + . . .+ anz‘nEi (z)

-byz I (2)~ . .~b 27PE (2).

The infinite series for the z-transforms Eo(z) and Ei(z) is now
substituted into the above equation and the coefficients of like

powers of z1 are equated, yielding

T = - - .’.+ hand - - -...
eo(k) a}?i(yT)+%_ei(kT)4 anei(kT aT) bleo(kT T)

-bneo(kT—nT). (13)

Note that z~1 = ¢-Ts which represent a time delay of T second. Equation
(13) may be programmed in the corputing device of Fig. 1;the variable
e4(kT) is furnished by the A/D converter; delayed values of the input
ei(kT-nT) and'delayed values of the output variable e, (kT-nT) are
stored in the computing device.

Equation (13) defines a programming scheme known as the direct
form. A block diagram of this form appears in Fig. 7.

Another programming scheme known as the cénonical form is determined

below. The transfer function is expressed as

Eo(z) M(z)

G(z) =
M(z) E(2)

1-18

e; (k)

T e

Fig. 7. Generalized block diagramlof the direct

programming form for a digital filter.

1-19

where
E (2)
M?z) =a +a z'l+...+anz'“v
M(z) _ 1
E; (2)

1+b1z'1+...+an'n (14)

The time-domain equivalent expressions for (14) are

m(kT)= e; (kT)-bjm(KT-T)~. . .~b m(kT-nT) | (15)

ey (kT) = am(kT)+ajm(kT-T)+...+a,m(kT-nT) - (16)

Equations (15) and (16) are the difference equations to be used in
the canonical programming form. A generalized block diagram of this

form appears in Fig. 8.

Mapping Function

The standard z-transformation of an analog function in the s-plane
may be considered to be a mapping from the s-plane to the z-plane under

the rule

z = elS, (17)
See Fig. 9. The mapping illustrates that the region of stability in the
s—plane (the left half-plane) corresponds to the interior of the unit |

circle in the z-plane. 1In facfa the primary strip in the s-plane maps

onto the unit circle. All other strips also map to the unit circle

1-20

eo(k)

ej (k)

AT P AT

Fig. 8. Generalized block diagram of the canonical

programming-form for a digital filter.

1-21 ¢

| IR(Z)

(é) s-plane (b) z-plane

Fig. 9. s-plane to z-plane mapping.

1-22

further illustrating the frequency aliasing problem of Fig. 5. Thus,

transfer functions which are stable in the s-plane will also be stable

after taking their standard z-transformation.

Frequency Response

The frequence response in the s-plane is evaluated by

|6(s) |

s=juw

LG(s) s=jw 0< w<uwg

This corresponds to evaluating G(s) along the contour in the s—plane of

Fig. 9a. Some upper cutoff frequence wpg is shown for illustration. In

the z-domain the contour follows the unit circle so that

z D(z) z= ejuwT 0 2wc< wg,

is used to calculate the frequency response of a discrete transfer function.

From equation (5) we see that D(z) is periodic in w_, so that in practice

s

“B = Wg /2 and the contour traverses the top half of the unit circle. Hence

db = 20 log |D(eduT)|

. (18)
¢ = (D(erT) 0< w = wg/2 .

~will be used to calculate the frequency response of a digital filter.

III. SAMPLED DATA TRANSFORMATIONS

Sampled-data transformations are the techniques one uses t6 obtain
numerical solutions to integral and differential equations. Any linear

 system's transfer function may be written as

Y(s
GS =—(—l
) = XGs)
Y(s) = Laplace transform of the output

X(s)

Laplace transform of the input.

Alternately the relationship between input and output may be described

as a differential or integral equation. Numerical methods may be

employed to solve these equations; these methods approximate the integral
and differential equations by difference equations. As we have seen pre-
:viously the difference equations may be represented by a discrete transfer

function. The complete process is illustrated in Figure 10.

Numerical Approximations

Several numerical approximation techniques will now be presented,

some for differentiation and some for integrationm.

Backward Difference

The backward difference is a simple technique which replacés the

derivative of a function by
1-23

1-24

Sampled Data

Transformation

Laplace
Transfer
Function

G(s)

Discrete
Transfer

Function

D(z)

Integral

and Difference
Differential Equations
Equations Numerical
Approximation

Figure 10. Relation between numerical approximations
and sampled data transformations.

d y(t) = y(t) - y(t - T)

T.

dt

See Figure 11.

In the Laplace domain

Y(s) - e 3Ty (s)

sY(s) =
T

. s 1 - e—sT

T

« 1 - z“l

g = .

T

Hence,
D(z) = G(s)
1 -271
s = .
T

Example. Find a discrete approximation for

G(s) = S
s + a
Y(s) = G(s) X(s)

sY(s) + a¥(s) =.sX(s)

1-25

(19)

1-26

x(t)

~2_.

y(uT)-y (nT-T)

nT-T nT

(a) Backward Difference
x(t)

A

‘tz"y(nT + T) - y(nT)

o - - - -
R O

=]
L

nT+T

(b) Forward Difference

Figure 11. Difference Approximations.

1-27

or

1%; x(t) + ay(t) =-7%; x(t).
Now let

% y(t) = y(t) - ¥(t - T)
_;t_x(t)___iﬁi) -;?c(t—T) .
Therefore

y(t) - y(t - T) _x(t) - x(t - T)
T + ay{t) = T

Evaluating at t = nT yields

1
1+ Ta

y(nT) = (x(nT) - x(nT - T) + y(nT -T)) .

Employing equations (12) and (13),

D(z) = L 1-z .
_ 1+ Ta

1-28

An alternate solution‘epploys equation (19) as follows

D(z) = —=
s + a
1 - 271
s=
T
1l - z-1
= T
-1
a+ 12
T
_ 1l - z—1
aT +1 - z-1
-1
D(z) = 1 1-2 .
1+ aT
1 - 1 21
1+ aT

Forward Difference

A similar numerical technique approximates

_d s y(t+T) -y(t) .
pTa y(t) % .

See Figure 11.

1-29

This repi:esents the equivalent Léplace domain approximation

STy () - ¥(s)

sY(s) = T T
o'r
. s esT -1
T
.2 =1
s =
T
Hence,
D(z) = G(s)
(20)
z -1

6(s) = —
s + a
S

D(z) =

(2) s + a

1-30

D(z) = T+
z=1 .,
T
1 - z-1
D(z) =

1+ (aT - 1) z~1

Rectangular Rule

Suppose now we try some numerical approximations to integrals and

compare results.

Left Side Rule. Let us determine the numerical approximation for

y(t) = j; x(t)dt .

Assume that the upper limit of the integral is t = nT. Hence

y(nT) = IL‘T x(t)dt . ’ (21)

Figure 12a illustrates the rectangular rule using the left side of the
-rectangles, Hence

n-1
y(nT) =T &£

x(1iT)
i=o :

n n-1
y(aT+T) =T I x(iT) =T7Z x(iT) + Tx(nT)
i=o0 i=o

= y(nT) + Tx(nT)

1-31

-

AN

(t)
A

(a) Left Side Rule

NS

x‘t)

(b) Right Side Rule

gu

tan

12. The rec

Figure

1-32
Therefore using equations (12) and (13)

Tz~1

D(z)
l-z’;

T
z~1

Hence we have approximated the integration transfer function

i , T
s T z=1

which gives the same results as equation (20) for the forward difference.

Right Side Rule. Figure 12b illustrates the use of the right side

of the rectangle in approximating equation(21l). Therefore
n
y(aT) =T I x(iT)
i=1

n+l A n
T = x(iT) =T ¢ x(iT) + Tx(nT + T)
i=1 i=1

y(nT + T)

y(TI) + T x(nT + T)

Letting n =n - 1

y(nT) = y(nT -~ T) + T x(nT)

Employing equations (12) and (13) one finds

T

D(z) = 1-2"1

1-33
Hence, we have approximated the integrator

i . _T
s 1-z-1
which yields the identical result of equation (19) for the backward

difference.

. Trapezoidal Rule.

The trapezoidél rule takes the average of the left and right side

of the rectangles in Figure 12. Hence

y(nT) = %‘ "TT [x(T) + x(ET + T)]
) 1=0
. 1 n-1 n
=2 [T T x(p+7T I oxUD]
i=o i=1

Using the results of the rectangular rule,

1 -1
D(z) =7 [Iz T
2 T t1T
I 1+z7L
"2 1-z71

Thus we have approximated

i + z"1

i . I
s 2 1T -2z1

This approximation is the familiar bilinear z - transform.

1-34

Simpson's Rule

Simpson's Rule evaluates equation (21) by the following formula

y(nT) =% [x(o) + 4x(T) + 2X(2T) + ... + 4x(nT - T)

+ x(nT)]

But

y(nT + 2T) = y(aT) +% [x(nT) + 4x(nT + T) + x(nT + 2T)]

Letting n = n - 2 and following equations (12) and (13) yields

D(z) =T 1+ 4771 4 272

3 1 - 274

Hence, we have approximated

Note that this formulation is valid only at even iterations (n even).

Impulse Invariance

Suppose that we want to find a discrete equivalent filter for the
Laplace transfer function G(s). Further suppose that we desire the im-
pulse response of the discrete equivalent to match that of the analog

filter as shown in Figure 13.

g(nT) = d(nT) .
Then

d(nT)z
=0

e 1 8

D(z) =

1-35

_ t ' ' =

—_— G(s) e

t

(a) Analog Filter

d(t)

I
p(z) p—————> —-sl 'e—

(b) Digital Filter

Figure 13. Impulse Invariance

1-36

) g(nT)z ™
i=0

]

G(z) ,

which is the standard z-transform. Hence, for impulse invariance
D(z) = Z[G(s)] = G(=2)
the digital approximation is just the standard z-transform of G(s).

Impulse Invariant Integrator

Let us find the digital equivalent of an analog integrator using

impulse invariance and the models of Figure 14. We know that

1 1
G(z) =2 [;] = 1 - z-l

and that

~-Ts
G (s8) = 1l-~ce
ho

S

=T

for small values of T. Hence

Y92 o 1
X(z) 1-2z1

and we have again approximated

_T
1 - 21

i
s
Therefore, the backward difference, the right side rectangular rule, and
the impulse invariant integrator all indicate equation (19) as their

equivalent sampled-data transformation.

1-37

G(s}

X(8) __;_//;._.

G(z)

(a) Analbg Integrator

/,

Y(s)

(b) Digital Integrator

Figure 14.

Ghé(S)

——%Yd(s)

Impulse.invariant integrator.

1-38

Mapping Functions Summary

As a result of our analysis of some elementary numerical approxima-

tion techniques we have identified several sampled data mapping functions.

Standard z-Transform

The standard z-transform yields an impulse invariant filter the

mapping function for this transformation is

s=11nz . (22)
T

This mapping has been previously defined in Figure 9.

Backward Difference

The backward difference approximation for the solution of differ-

ential equations provides the following mapping
s=1-z1 . (23)

See Figure 15. Note that the region of stability in the s-plane maps

1 plane. Since the region

into the right half plane z7) > 1 of the z~
of instability in the z'-1 plane is the interior of the unit circle,
stable analog filters will always result in stable digital equivalents.

In fact some unstable analog filters give stable digital ones. A major

disadvantage of this mapping is seen in the frequency response contour.
The jw axis in the s-plane does not map to the unit circle in the z_1
plane (or the z-plane either). Hence, as we get farther from s = 0 or

zA= 1 the more degraded will be our desired frequency response. Thus,

b“.

// ////

1-40

we must decrease T (increase f) to improve this approximation.

Forward Difference

The forward difference approximation suggested the following
mapping

s =2z-1 . (24)

This mapping function is shown in Figure 16. Note that the left-half
plane in the s domain ﬁaps to the region to the left of z = 1 in the z-
plane. But the interior of the unit circle represents the stability re-
gion in the z-plane. Consequently, some stable analog filters will

give unstable digital ones. Unstable analog filters will also be un-
stable digital ones under this mapping. Yet a further disadvantage is
the same frequency contour encountered in Figure 15. Hence, this is an

undesirable mapping.

Bilinear z-Transformation

The trapezoidal integration approximation led to the sampled data
mapping

s =21 -1

21-2 . (25)
T1+z 1

This mapping is illustrated in Figure 17. Notice here that the entire

left-half s-plane maps to the interior of the unit circle in the z-

plane. Hence, all stable analog filters will result in stable digital

ones. Also, the jw axis in the s-plane maps to the unit circle in the
z-plane. However, the entire jw axis maps onto the unit circle which

causes a mismatching of frequencies. This is a direct result of the

aaaaaaaaaa

1-42

_ 0) Re(z)
1

(b) z-plane

Figure 17. Bilinear z-transform.

1-43
characteristic that for a digital filter

z=1-»0

=0
z = -1l -+>uw= ws/z

as required by equation (18). For the bilinear z-transform the frequen-

cies in the z-plane (wD).are related to frequencies in the s-plane (W,)

by
jupT _ s ed
v e 1 2j sin wpT
Jwa= . . = -
DT 4 3 2
2 cos wDT
2
or
-1)
wp = 2 tan. wA (26)
T E

See Figure 18. Correction for this frequency scale warping may be accom-
plished by redesigning (prewarping) the critical frequencies of the de-
sired transfer function G(s) before applying the bilinear z-transform.
This transformation maps circles and straight lines in the s-plane
to circles in the z-plane. It works well for frequency characteristics
which are piecewise linear. It also insures that no frequency aliasing
can occﬁr in the tfansfer function ffequency charaqteristic because the
+j® axis does map in;o the upper half of the unit circle. Hence, the

‘bilinear z-transform is quite popular.

1-44

Figure 18. Change in frequency scale for bilinear
2-transform.

1-45

Matched z-Transforms [2]

The standard z-transform of equations (3b) and (4) required a

partial fraction expansion of G(s) in order to complete the mapping

1 = 1

s +u
e uT,-1

1 -
For the purpose of simplifying the calculations, the matched z-transform
maps the poles and zeroes (-bj and -y of equation (3a)) to the z-plane

as follows:

s+a-+1-z1e0l @7

Hence the matched z-transform of equation (3a) is

G(z) G(s)

1 - gz lemail

s + ay

s + bj =1 - z-le_bjT
-1 ~-a.
(1-2z"e a1T)

=8

=k i " (28)

-1 ~-a:T
e

Qa-z 37

n=g

| 1

where K is adjusted to give the desired gain at d.c. (z = 1). This
-transform matches the poles and zeroes in the s and z planes. Note that
the poles of this transform are identical with those of the standard z—
transform but that the zeroes are different. Because of this difference,
the matched z-transform may be used on nonbandlimited inputs. If G(s)

has no zeroes, it is sometimes necessary to multiply (1 + z'l)N, N an in-

teger, times the expression (28).

1-46

Other Transforms

_ In general any transformation which maps the stable region of the
s-plane into the stable region of the z-plane may be used. It is help-
ful for the jw axis in the s-plane to map to the z-plane's unit circle.
Another important property is that rational functions G(s) should be
transformed into rational functions D(z) so that the proper difference

equations may be determined for realization.

Simpson's Rule

The Simpson's Rule approximation suggested that the mapping

1 - z-2 (29)

-2

S=

3
' 1+ 42-1 + z
be used as a transformation. The analysis of this mapping is left as
an exercise for the reader. Please note that a second-order function
G(s) will transform to a fourth-order D(z). This is undesirable from a

digital hardware viewpoint.

(w,v)=Transform [14]

In some applications, the system transfer function G(s,z,z%) may be

a function of s, z = eTS, and z%, where 0 < o < 1. 1If all initial con-

ditions are zero and

-1

l1-12z2
+ z=

1

v(@) =1 - a(l - z—l) +a(a = 1) (1 - z—l)z,
2

1-47
then for a system described by
¥(s) = G(s,z,z®*) X(s)

its z-transform will be

Y(z) = G(w,z,v(a)) [X(z) - %S%l;>1] .
If x(0) = 0, then
D(z) = G(s,z,2z%)
s =w
z% = v(a)

This completes the definition of the (w,v) transform.
Example. Scott [15] has shown that a desirable phase lock loop
has the transfer function

10
s + 10z

. 6le) = 0.5

Using the (w,v) transform to find a digital equivalent if x(0) = 0

b = 10
s + 10z ~°
s =w= 2;1 - z-l
T1+ z 1
2703 = v(0.5)

v(0.5) =1 - 0.5(1 - z‘l) + 0.5(-0.5) (1 - z‘l)2
2

= 0.375 + .75z"% - .125272

D(z) = ST 420

= =))
T+ 1.875T) - (I - 5.625T)z I (3.125T)z % -(.625T)z

IV. DISCRETE STATE VARIABLES [5]

An nth order discrete-time system is generally described by diff-
erence equations. The difference equation description of the system
dynamics may be alternately presented in vector matrix (state variable)

form by the following set of first-order difference equations.

x(kT + T) = Ax(kT) + Bu(kT)

y(kT) = Cx(kT) + Du(kT), (30)

where x(kT), u(kT), and y(kT) are vectors of the discrete state variables,
input variables, and output variables respectively. The symbol T is the
sampling period and k is any non-negative integer.
For the purpose of simplifying the notation, the sampling period
T shall hereafter be omitted from the equation; thus, equation (30) be-
comes
x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k) (31)

The solution of equation (30) can be found by rewriting the first

of equations (31) in standard z-transform notation:
z X(z) = AX(z) + BU(z) + zx(0),

where x(0) is a vector of the initial condition of the state variables.

Solving for X(z) produces

X(z) = (2I - &) 1zx(0) + (21 - &)71BU(2). (32)

1-48

1-49
The inverse z-transform (Z-l) of (zI - A)_lz is
27 - m7 2] = 00 = A
Therefore, the inverse z—transfofm of (32) yields
k-1 :
x() = a%(0) + } A¥ 1 Ppyn) . (33)
‘ n=0
This solution demonstrates that the present state of the system x(k) is

dependent upon the initial state x(0) and the system inputs u(n) from

the initial time (t = 0) to the present time (t = kT).

V. CONVOLUTION

In this section a review of continuous and discrete linear systems

is presented. The equations are discussed in rapid succession.

Continuous Linear Systems

Figure 19a illustrates the conventional continuous system under

consideration. Any linear system obeys superposition and is characterized

by the impulse response g(t, £), the response at time t due to an impulse
at £. Hence

y(t) = [x(&)glt, €)dg, (34)

=00

which is called the superposition integral. If the linear system is

shift invariant then
g(t9 g) = g(t - g)

and equation (34) becomes

yt) = [x(E)g(t - £)de, (35)

A x(t)*g(t)

which is the convolution integral.

But, by definition of the Laplace transform

-]

Y(s) = é y(t)e Stdt .

1-50

1-51

x(t) >+ System

(a) Continuous Systém

x(nT) >» System

(b) Discrete System

Figure 19. Convolution.

—

y(t)

y(nT)

1-52

Taking the Laplace transform of equation (35) produces

Y(s) = G(s)X(s),

where

[~}

[g(r)e™tae
0

it

G(s)

is called the system transfer function;

and G(jw), the frequence response of the system.

Discrete Linear Systems

Figure 19b illustrates the conventional discrete-time system under
consideration. The linear discrete system also obeys superposition and
is also characterized by the impulse response d(nT, kT), the response

at time nT due to and discrete impulse §(kT), where

§(kT) =1 if k=20
(36)
=0 ifk#0
and
x(nT) = Z x(kT)G(ﬁT - kT)
k=0
By superposition
y(oT) =) x(kT)d(nT, kT), (37)

k=0
which is called the superposition sum. If the system is shift invariant,

then

1-53
d(aT, kT) = d(aT - kT)

and equation (37) becomes

y(@T) =) x(kT)d(aT - kT), (38)
k=0

A x(nT)*d (nT)

the convolution sum. But by definition of the standard z-transform

Y(z) =) y(kT)z_k.
k=0

Taking the z-transform of equation (38) produces
Y(z) = D(z2)X(z)

which is the identical result in equation (11). Hence, D(z) is called

v the discrete system transfer function and D(eij) is called the frequency

response (see eqhation (18)).

VI. DISCRETE FOURIER TRANSOFRM

This section examines the properties of continuous Fourier trans-

forms and derives the discrete approximation.

Continuous Fourier Transform

The Fourier transformation may be defined by

G(f) = [g(t)e I2rftye (39)

-0
and the inverse Fourier transform as

g(t) = [G(f)ed? s | (40)

The similarity between equations (39) and (40) is illustrated by the
summary of Fourier transform pairs listed in Table 1.

Another useful property of Fourier transforms is shown below:

o« 2 0
[e at = [le®)|? at. (41)

-C0 - 00

This is known as the Fourier Integral Energy Theorem.

Discrete Fourier Transform [6]

Sampling Process

In Figure 4, an impulse sampler was presented which sampled a
signal for t > 0. However, if the signal is zero for negative t, the

following sampling function produces the same effect:

1-54

TABLE 1. Fourier Transform Pairs

" Time Function

Fourier Transform

g(t) G(£)
§(t) 1
1 6(t)
A A sinmAf
t+>) - u(-= A——=
nle +) —ule =) TAf
asinmAt u(f +8) - u@e - 4
TAt 2 2

§(t + %) - 8(t '_-.%)
2 cosTAt
La(0)
ijntg(c)
.

[g(x)dx
0

g(At)

Ag; (t) + Bgy(t)
g(t + A)

eZTTAtg(t)

g(t)*x(t)

g (t)x(t)

] 8(t - kT)
k=-.co

2 costmAf

A - A
S(E +2) + 8(F -)

j2mEG(£)

d
3£ ¢(H)

G(f)
j2nf

1 g
A A

AG{ (£) + BG,(f)
ej2anG(f)
G(f + jA)
G(E)X(f)

G(f) *X(f)

1-56

ACt) =) 8(t - KI). (42)
k==

From Table 1 the Fourier transform of'A(t) is
1 ¢ k
F[A(E)] ==) 8(f -).
Tk:-oo T

In order to verify this result we may note that F[A(t)] is periodic and

may be expressed in a Fourier Series as

©o

Fla(e)] = [¢

n==—w

-j2nnTf
e

where

]ej2nandf

[p]
1]
L]
S

F{a(t)

(2]

"
=]
—
3=
[= N
rh
1
'—l

Hence

o

Fla(t)] =]

n==—w

-j2mnTf
e

as expected from equation (42).
Suppose the sampling function in equation (42) is multiplied by

an input signal g(t) to produce the sampled signal

1-57

g(t)Aa(t)

g*(t)

) g(kT)s(t - kT).
k==

As illustrated in Figure 5, if B/2m, the highest frequency in the
sampled signal is less than fs/2, then recovery of the original signal
is possible with an ideal low-pass filter whose cutoff is fgs. To

recover the signal, g,.(t) we multiply G*(f) by a square window function

Eﬁp(f)'
G (£) = G¥(£)Fg, (£) (43)

Since multiplication of Fourier transforms represents convolution in the

time domain

g*(t)* sin(nt/T)

g.(t) = /T
_ o sin(nt/T)
—-Lz_m BUDS(- kT)] * [————nm]
® . sinl(t - k |
g (t) =] gkI) Sﬂnf(t D (44)
k=—o F(t = kT)

If fS > B/m, the low pass filter is 1deal, and the samples g(kT) are

exact, then

gr(t) = g(t) .

1-58

However, the samples are never exact, no signal is ever bandlimited, and
no low-pass filter is ideal. Therefore, we can't exactly recover a
sampled signal.

DFT Derivation

Now discrete versions for (39) and (40) will be determined. Define

the following conditions for (39):

fs = sampling frequency

T = 1/f, = sampling interval

g(t) = 0 outside the interval t = [0,NT]

N = an integer, the number of sample points

G(f) is bandlimited to i;fS/Z.

Please note that these conditions can never be completely satisfied.
With the time-limited function g(t), G(f) cannot be bandlimited. In
practice it can get quite small as'|f| increases. However, sincg a
function is never time and bandlimited, the time and frequency samples
are corrupted by aliasing.
Using the above conditions in equation (39) one obtains
G(f) = fNTg(c)e'jZ“ftdt :
0
Using the rectangular rule for numerical integration
N-1

G(f) =T § g(kt) e I2MEKT (45)
k=0

1-59

The discrete'version of equation (39) will compute samplés of G(f)
every Af = fg/N = 1/NT Hertz. Substituting f = nAf into equation (45)
N-1

G(nAf) = T } g(kT)e
- k=0

=j2mnAfkT

or

N-1 .
G/NT) =T J g(kT)e d (27/NM)nk
k=0

In another form
N-1

G(/NT) = T] g(kT)w ™K | (46)
k=0 :

where

W= ej21T/N

Since g(t) = 0 outside the interval O<t<NT, one can construct

a periodic function h(t) from g(t), with. period NT:

[--}

h(e) =] g(t - mNT), (47)

m=—oo

which may be written

-]

t
f g(t) Z §(t - mNT - t)dt
0

m==oo

h(t)

©

g(t)*) s(t - mNT)

==~ CO

1-60

where the * denotes convolution. Since G(f) is bandlimited to £5/2,

so is H(f). Therefore,

G(f)[1/NT] &(f - m/NT)]

H(E) =
m==-o
=71 Ei%éﬂil 1 6(f - m/NT),
m==c 4 :
and
H(f) =)} H (@/NT)6(f - m/NT) , (48)
m=—co)

where H(f) is the continuous Fourier transform of h(t). The weighting

function H"(m/NT) in equation (48) is defined below:
H"(m/NT) = (1/NT)G(m/NT) . (49)

Equation (46) may be inserted in (49),

N-1

H @/NT) = (1/N) | g(kr) w oK (50)
k=0
From (47),
g(kT) = h(kT): k=0, N-1.
~ Therefore (50) becomes
N-1
H (@/NT) = (1/N) J h(kT) Wk (51)

k=0

1-61

IDFT Derivation

The inverse discrete Fourier transform is found by considering

equation (40)

=]

h(t) = [H(f)edI2TEtys,

-—C0

Under the conditions of the previous section

“1/2T . :
h(t) = { u(e) eJ2mitys (52)
-1/2T | ‘

since H(f) is bandlimited to fs/2 = 1/2T.

Substituting equation (48) into (52) and evaluating at t = kT,

1/2T o
/) H,(m/NT)ejankT

-1/2T m=-o

h(kT) = §(f - m/NT)df

Since the integrand is periodic (1/T) in £,

/T o
heery = /7 we@/ryed GV onynmyat
' 0 m=-o

The limits of‘integration truncate the sum to
N-1 . ' ,
hGT) = B (o/ND)WE. | (53)
m=0
The prime is dropped in equations (51) and (53) for convenience, and the

resulting relations are

1-62

DFT
N-1
H(m/NT) = (1/N) [hknw ok
k=0
IDFT
N-1
h(kT) = § H@/NDWK
n=0

These equations define the discrete Fourier transform pair.

(54)

(55)

This

" transform may be thought of as a mapping of N points in the time domain

to N points in the frequency domain.

DFT Pairs

Although equations (54) and (55) are discrete approximations of

(39) and (40), we can show that they form exact transform pairs.

From equation (54),

(56)

where H and h are vectors constructed of the N samples in the frequency

and time domains, and

1 1 C e 1

1 wl L. w2 (8-1)
W] = . .

1w @®D - (-1)2

From equation (55)

h = [W*] H

(57)

(58)

1-63

where [W*] is the'complex'éonjhgate of [W]; In order to prove that the

transform pairs are exact one must show that
=1 _ 1 st .
W] = = = [W*] . . (59)
. N i .
This proof follows:
Let
[P] = [W][W*]

then a general element of [P] is '
1
W (m"l)

_ g o-@-1) -(N-1) (£-1)
Ppn = [1W e W]

w(8-1) (@-1)

- -d

W (N-1) (£-m)

=1+ W—(ﬂ-m) + .

Then all diagonal elements of [P]
Ppp=1l+1+...4+1=N
and the off diagonal elements

1 - ed
Tt o oY

Hence

[P} = N[I]

and the exact relationship is proved.

- 1-64

A summary of DFT pairs is listed in Table 2. Several other

interesting relations are displayed below:

N-1
h(0) =)} H(m/NT) (60)
m=0
N-1
H() = (1/N)]} h(kT) (61)
k=0 '
and
N-1 -
% I han|2= J |H@nND |2 (62)
k=0 m=0

This last relation is known as Parseval's Theorem.

Fast Fourier Transform

Calculation Time

The fast Fourier transform (FFT) is a high speed technique for

calculating the bFT. If the number of samples N may be written
N = ryrp...r, , rj an integer

then
(W] = [0 1[W,]" "~ [W,] - (63)

where [Wi] is an N x N matrix with only r;N non-zero elements. The

calculation of

1
H=5 [Wlh

1-65

TABLE 2. DFT Pairs

h(kT) : H(m/NT)

Ahj (KT) + Bhy(KT) - AH(m/NT) + BH(m/NT)
h(kT - nT) | W (m/NT)
hy (kT)hy (KT) H, (m/NT) *H, (m/NT)
h*(kT) H* (-m/NT)
h(-kT) H(-m/NT)
6 (kT) - 1/N
S(KT - nT) (1/N)wmn
1 Nil hy (€ + k)hy(£) | H, (m/NT)H, (-m/NT)
N 2=0 E - »

1-66
requires N2 operations of complex multiplication, whereas
—— 1 LN
SRS USICACRIUR DY (64)
r,N operations

requires (r; + ra + +-+ + r,) N operations. For the special case r; = 2,

N = 2B, the total number of operations is

ffoper (2+2+ *°* 4+ 2)N

= 2nN

Example. Compare the time to calculate the DFT and FFT of a sequence
of 1024 samples of a time function given that a typical computer cal-

culates a complex multiplication in about 40us

DFT:

Calc. Time = N2(40us)
= 1.053 x 10°% x 40 x 1076
= 42.1 seconds

FFT:

Calc. Time =

2Nlog2N(4Ous)
= (2048) (10) (40 x 10~6)

= ,82 seconds

1-67

FFT Derivation

Since the DFT is a linear operation and N = Zn, we may break equation
(54) into two functions, the even samples and the odd ones:

(N/2)-1

H(w/NT) = % T [hT)w 28k 4 p okt +Tyw 20y
k=0
(N/2)-1 -m (N/2)-1
=1 Y hermw?m 4 B Y hekr + T2k
¥ k=0 N k=0
or

H(m/NT) = DFT[h(2kT)] + W DFT[h(2kT + T)] (66)

form=0, § - 1. But

=4

-t _m

X N

W 2 =W 2=-W
-2(m + x -2m_~N -2m

w2+ 2) _yimyN i

Therefore, the remaining samples may be determined by -

(N/2)-1 _

H@/NT + 1/2T) =X § heknyw 2™

N k=0

-m (N/2)-1 o
- F Y Thkt + D2
N k=0
or

H(m/NT + 1/2T) = DFT[h(2kT)] - W "DFT[h(2kT + T)] (67)

1-68

for m = 0, g'— 1. The above equations may be successively applied in
order to achieve the maximum reduction in computation time indicated
by equation (65). The technique of dividing the time samples into
even and odd parts is sometimes called "decimation in time." The FFT
of eight-points is illustrated in Figure 20.

Note that the time samples are entered in "bit reverse' order:

bit
binary reversal
0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7

IFFT Derivation

Since the IDFT is a linear operation and N = 2B, we may separate

equation (55) into two functions, the even samples and the odd ones:

h(kT) = (lez-l [HQo/NTW + H(2m + 1/NT)W2ORWE]
n=
= (N/f)_lu(zm/unwz"‘k +.wk (N/f)-ln(‘zm + 1/NT)w?ek
m=0 m=0
or
h(kT) = IDFT[H(2m/NT)] + WkIDF'I‘[H(Zm + 1/NT)], {68)
for k = 0, g- 1. But

1-69

*soTdwes 3y81e 103 I4d QT @and14

(18/L)H-NO—

(18/9)H.-NO-

(1)

(18/5)H-NO— —O (19)y
(18/%)H.N O W
(18/¢)H-NO- < HM;\‘ = Aaovpv
(18/2)u-NO- _ < Amw —O 12)y
(18/T)H.-NO— _ _ L5 avu

(0)H-NO

(0)u

1-70

N 4
w2k +2) o g2l o g2k

Therefore the remaining samples may be calculated by

NT (N/2)-1 4 (N/2)-1
hT +) =] HEo/NDWEK - wk) HEn + /8D
m=0 - m=0
or
NT k
h(kT + j;) = IDFT[H(2m/NT)] - W IDFT[H(2m + 1/NT)] (69)
for k = 0,-% - 1. The repetition of this process yields the algorithm

for the IFFT. The above derivation is sometimes called "decimation in
frequency."

Equations (66) through (69) suggest an algorithm for calculating
the IFFT as shown in Figure 21. In this figure the equations (68)
and (69) are employed at each stage of the transformation of eight
frequency samples into eight time samples. Note that the frequency
samples are again inserted in "bit reverals' order.

The reader will please note the similarity of the Figures 20 and
21. The basic element is sometimes called a "butterfly" as shown in
Figure 22. The gains on a few multipliers are different. This structure

suggests the mechgnication of FFT hardware.

1-71

soTdwes 3y8T1o 103 TJJI

*T¢ 2an31y

Y = Z =N
1- -4 I-
(1L)y O —< ~ ~O(18/L)H
1- o
(19)4 O— , < , o (18/€)H
_ X .
(1S)y O— > MA —O(18/S)H
@y : -0(18/1)H
1- -1 I-
(1£)4 O- ~< _ —O(18/9)H
- oM .
(1Z)y O- < _ ————O0 (18/20)H
(Wyu o \ / , > MA O (18/%)H
(0)40— - > - ——0 (0)H

1-72

o
]

a+c

o
"

a -2«

Figure 22. Butterfly structure.

VII. RANDOM PROCESSES

In the analysis and synthesis of digital filters one frequently
encounters signals which are random in nature that must be examined

with special techniques.

Continuous Processes [6]

If G(f) is the Fourier transform of a continuous signal g(t), the

power density function or power spectrum may be defined as

- 1 2
Vo () = lim {3 G(£)|“ } .

Ao

The auto correlation function

1 A -
(t) = lim 2 f g(t)g(t + 1)dt.

1
- Veg ao A0

These two functions form a Fourier transform pair

ng(f) = -i wgg(r) ejZ"der

Both the power spectrum and the auto correlation function are real and

symmetric.

Discrete Processes [16]

For the discrete case, the cross-correlation function is first

defined

1-73

1-74

N-1
Y. (kT) = 1im %-) y(@T)x(nT + kT)
Xy N-+o n=0

When both functions are the same (x = y), the cross-correlation becomes
the auto-correlation
' 1 N-1
wxx(kT) = lim § Z x(nT)x(nT + kT).
Noroo n=0

The auto-correlation function evaluated at k = 0 yields

1 N1,
Vg (0) = lim & Z x”(nT)
N> n=0
= x2 (kT)

the mean squared value of the signal x(kT).
Since the power spectrum is the Fourier transform of the auto-

correlation,we see from Table 2 that
‘l’xx(m/N‘T) = X(m/NT)X(-m/NT)

if the signal x(kT) is time limited in the interval [0, NT]. Therefore
¥ _ (@/NT) = |X(m/NT) | 2.

The Fourier transform of the discrete cross—correlation function is
‘i’xy(m/NT) = X(-m/NT)Y (m/NT)

and is sometimes called cross power spectrum or cross-periodogram.

1-75

Lastly, consider the discrete system of Figure 13b with a random
input whose power spectrum is known. We may find the mean squared

value of the filter's output by the following:

yz(nT)=.2—Tlrj- lj: ¥_ (2)D(2)D(1/2)dz/z

where

I' = the unit circle

k

]

Your 2) = 1 W (kT)z™
XX k=0 XX

power spectrum

(1]

[(2)

(3]

(4]

(5}

{6}

(7]

[8)

(9}

(10}

11}

[12)

(13}

1-76
REFERENCES

B. C. Kuo, Analysis and Synthesis of Sampled-Data_Control Systems,
Englewood Cliffs, New Jersey, Prentice Hall, Inc. 1963.

R. M. Golden, "Course Notes -~ Designing Digital Filters z-Trans-
forms and Fourier Analysis,” National Electronics Conference,
St. Charles, Ill., June, 1969.

A. P. Sage and S, L. Smith, "Real-Time Digital Simulation for
Systems Control," Proc. of IEEE, Vol. 54, No. 12, Deg., 1966,
pp. 1802-1812.

H. T. Nagle, Jr., "The Organization of a Special-Purpose Computer
to Implement a Generalized Digital Filter for Sampled-Data Con-
trol Systems,” Doctoral Dissertation, Auburn University, Auburn,
Ala., June 3, 1968.

P. M. DeRusso, R. J. Roy and C. M. Close, State Variables for
Engineers, New York, N. Y., John Wiley and Sons, Inc., 1965.

G. K. McAuliffe, "Course Notes - The Fast Fourier Transform and
Some of Its Applications,’ National Electronics Conference, St.
Charles, Ill., June, 1969.

A. R. M. Noton, Introduction to Variational Methods in Control
Engineering, New York, Pergamon Press, 1965.

G. Williamson, "Optimal Controllers for Homing Missiles,' Report
#RE-TR-68-15, U.S. Army Missile Command, Redstone Arsenal, Ala-
bama, Sept., 1968.

R. E. Kalman and R. S. Bucy, "New Results in Linear Filtering and
Prediction Theory," J. Basic Eng., March, 1961, pp. 95-108.

T. C. Heia, "On Synthesis of Optimal Digital Filters,' Proc. First
Asilomar Conference on Circuits & Systems, Nov., 1967.

J. B. Slaughter, "Quantization Errors in Digital Control Systems,"
IEEE Transactions on Automatic Control, Vol. AC-9, January, 1964,

PP- 70-74.

H. T. Nagle, Jr., 'Comments on 'A Least Upper Bound in Quanti-
zation Error,'" IEEETAC, Vol. AC-14, No. 4, Aug., 1969.

B. Widrow, "Statistical Analysis of Amplitude Quantized Sampled-
Data Systems," AIEE Transactions on Applications and Industry,
No. 52, January, 1961.

[14] -

1-77

C. A. Halijak, "The (w,v)-Transform," Proceedings of the IEEE
1972 Region 3 Convention, Knoxville, Tennessee, April 10-12,

1972, pp. C4.1-C4.3.

[15]

[(16] .

R. E. Scott, "An Improved Phase Lock Loop Derived from Ideal
Single Sideband Modulation,'" Ph.D. Dissertation, Univ. of Denver,
Denver, Colorado, June, 1966, pp. 20-27. :

A. J. Monroe, Digital Processes For Sampled Data Systems, John

. Wiley and Sons, Inc., New York, 1962.

PART TWO

DIGITAL FILTER THEORY

I.

II.

PART TWO: DIGITAL FILTER THEORY

TABLE OF CONTENTS

Digital Filter Categories. e e e

A.

B.

CQ

Nonrecursive Filters . « ¢ + ¢ o o+ ¢ o o « o &

1.
2.
3.
4,
5.
6.
7.
8.
9.
10.

General. . . . e o e s e e e e e e e .
Finite Impulse Response Filters.
Fast Convolution « ¢« ¢« &« « ¢ + o &
Linear Phase Filters . . « + « ¢« & « o« « &
Frequency Sampling Filters
Windowing Filters. . « . . « v ¢ o ¢ o o o
Moving Average Filter. « . .
Least Mean-Square Digital Filters., . . .
Least Squares Polynomial Moving Arc Fllter
Digital Inverse Filtering.«

Recursive Digital Filters. . . « « ¢ ¢ o« + &

1. General., . « & ¢ v ¢ ¢« o ¢ 4 o o 6 o 4
2. Block Recursion., . . . “ e e e
3. ~ Flat Group Delay Digital Filters e e e .
Advanced Topics, . . e e e s e e .

1. Complex Digital Filters e e e e e e e
2. Randomly Sampled Filters e e e e e e e e
3. Multirate Digital Filtering.
4. Two Dimensional Digital Filters,
5. Adaptive Digital Filters
6. Floating Point Digital Filters
7. Optimal Digital Filters. . . . « + « + &
8. Nonlinear Filtering.«
9. Range Adaptive Digital Fllterlng . . e
10. Random Sample Skipping~;
11. Block-Floating-Point Filters
12. Sample-Rate Reduction Digital Filters . .

Transfer Function Synthesis.

AC

Nonrecursive Filters . . . o« e v e
1. Specification of Frequency Domaln Zeroes ,
Frequency Sampling

2.

2-ii

III.

IV.

3. Windowing.
4, Equiripple Filters .

B. Recursive Filters.« .

.

1. Direct Synthesis in the Frequency Domain
2. Sampled Data Transformations .

Digital Compensators . . .
Frequency Sampling
. Nonlinear Programming., . .
. Optimal Digital Equivalent

AW

C. Sample Designs . . . « + + « &
1. Bandstop Filter.
2. Digital Resonators
3. Digital Differentiators.
4. Low-Pass Filters . . .

Coefficient Quantization
A. General. ¢« v . v o .

B. Instability Thresholds

.

C. Reduced Coefficient Wordlengths,

Nonlinearities in Fixed Point Arithmetic ,

A. Quantization Errors.,
1. Quantizer Types, .,
2. Steady-State Analysis, . .,
3. Statistical Analysis , , ,
4, Quantization Error Bounds,
5. Open-Loop vs. Closed-Loop,

B. Limit Cycles and Deadband Effects,

C. Saturation and Overflow, . . .

D. Dynamic Range.

.

Nonlinearities in Floating Point Arithmetic,

A. Notation ¢ ¢« ¢« ¢ o o &

B. Error Sources. + o+ « « o+ &

2-66
2-66
2-68
2-90
2-93
2-94
2-95

2-101
2-101
2-101
2-102
2-103
2-104
2-104
2-104

2-105

2-108
2-108
2-108
2-111
2-116
2-118
2-122
2-123
2-124

2-125

2-126

2-126

2-127

- C.

D.

Coefficient Quantization . .

Output Error . « « + « « &

VI. Programming Formse . « . « + o

A.

B.

C.

Direct Form. « « + + o
Modified Directs » « « « »
Standard Forme - + - - s
Modified Standard Form.- . e

Canonical Form e« »+ « « s

‘Modified Canonical Form. .

Parallel Form- + » + « o
Cascade Form « + + o » o » o
Modified Cascade + + - -
X1 Structure + ¢ = ¢+ ¢+ o ¢

X2 Structure s + =+ o o e

Summary of Programming Forms -

VII. Computer Aided Design. . + -

AI

B.

c.

Transfer Function Synthesis.
Coefficient Quantization .

Programming Form Selection -
1. General: ¢+o « o « o +

2. Flow Chartse +» « « =+ o &
3. Source Listing « « « «
4. Summarye + ¢ ¢ o+ e

5. Stored Program Mode: - -
6. Special-Purpose Computer
7. Closed Loop Comparison -
8. Conclusion +» + « » « =+ &

Mode.

.2-iv

2-129

2-131

2-137

2-138

2-140

2-143

2-145

2-147
2-149
2-152
2-154
2-157
2-160
2-162

2-164

2-168.
2-168
2-169

2-169
2-169
2-172
2-174
2-174
2-176
2-178
2-181
2-185

VIII. Applications of Digital Filtering. . . . « « . « . o ¢ « . . 2-186

REFERENCES---.---.------...-.-------.-.2-187

2-v

I. DIGITAL FILTER CATEGORIES

The generalized transfer function of a digital filter has been
shown to be the ratio of two polynomials in z. Generally the coefficients
‘of the polynominals are real numbers which must be determined in some
manner to force the digital filter transfer characteristics to meet
some criteria. The manner in which the coefficients are found as well
as other considerations (for example, implemention details) allow us
to categorize digital filters into several classifications. In this
chapter we examine non—reﬁursive, recursive, aﬁd several other major

categories for digital filters.

Non-Recursive Filters

General

Non-recursive digital filters are those whose transfer function

can be written as

m .
D(z) =] azz t . (1-1)
i=0
Non-recursive filters have no feedback terms, and hence they have a
finite impulse response. They are sometimes called transversal filters,

a name used for delay line filters in radar moving-target-indiéator

applications.

Much emphasis has been placed on these filters in the literature

and several design techniques will now be illustrated.

Finite Impulse Response Filters [1]

Finite impulse response (FIR) filters satisfy equation (1-1).

Consider the first order filter

1
H(z) = 1 la] <1
1-az
=1+ azl+ (az'l)2 + *c
=) (az_l)z .
£=0

Suppose we truncate the series to M terms to produce the FIR below

M-l £
Hy(z) =] (az”h) (1-2)
2=0
Also,
-1.M M_ M
By(z) =222 . 2 "2 (1-3)
1 - az-l zn-l(z - a)

This is another way of expressing the FIR as filter with feedback.
Fig. 1 illustrates the z-plane pole-zero locations for both H(z)
and Hy(z) for M = 8. Fig. 2a shows the implementation of (1-2);

Fig. 2b, (1-3).

Fig. 1. Pole-zero Plots in the .
z~-plane.

X(KT) ey

2-4

_.+ T i T P o0 ¢ st e T
a
—l—
S
(a)

x(kT) =

41-, T I ...__.4 T

Fig. 2.

(b)

Block Diagrams for (1-2) and (1-3)

y (kT)

2-5

Fast Convolution [2]

Fast convolution is a technique which employs the FFT and IFFT
to determine the filter output response (see Fig. 3a). Direct convolu-

tion is ekpressed by

N-1 -
y(kT) =) hET)x(kT - £T). (1-4)
£=0

To calculate N output points, this requires N2 real multiplications.

For fast convolution
y(kT) = IFFT{H(-2) FFT(x(kT))} . (1-5)
NT . :

Here the FFT and IFFT require 2Nlog,N operations each, while the multi-

pliéation requires N operations. This totals
{# operations = N(4 logy N + 1).

If each operation (a complex multiplication) is assumed to take approxi-

mately 4 real multiplications, the result is
#_multiplicationé = 16 N logy N. 4 (1-6)
Suppose N = 1024, then N2 = 106 and 16 N logy N = 1.6 x 105, Hence,

for large numbers of output points, the fast convolution technique

is faster than direct convolution.

2-6

X (kT) = FFT A @—’ IFFT

h(kT)

1‘

m
H(iﬁg

(precalculated
and stored)

(a)
" t;’///\\\\‘iﬁi
NT
x(t)
MT
Y |/\"
(MHN) T

(b) Convolution of h(t)*x(t)

PNy

x(kT)

i il l

y (kT)

]
L]
|
/V\L/
> -~ ~
} N = -

(c)

Fig. 3. Fast Convolution

—pp» y(kT)

Qj&

2-7

The reéder must be careful in using the fast convolution technique
because the results can be misleading. Consider the convolution éf
the analog signals in Fig. 3b. If we sample these signals and use
the FFT and IFFT, we are convolving the periodic functions shown in
Fig. 3c. Hence the output y(kT) can differ greatly from the desired
sequence.

In order to improve the results one may add zeroes into the input
and transfer function sample sequences as shown in Fig. 4. Note the
improved output response. However, in adding zeroes we have increased

the calculation time unless we modify the FFT algorithm.

Linear Phase Filters [3]

A linear phase filter is an FIR filter with exact linear phase.
They may be used to approximate an arbitrary magnitude frequency
response without causing phase errors. The linear phase filter is
good for standard lowpass, bandpass, and highpass filters.

If the number of sample points in a FIR filter is
N=2t+1,
then linear phase with delay 1 is realized if and only if

h(kT) = h(NT - T - kT) (-7

2-8

ﬁ(kT) v ////\\\\\\\\\\

NT LT

2(kT)

; (kT) /\—/—\

Fig. 4. Add a Zero Sequence

2-9

Hence, for N even
1. There is no unique peak in h(kT)
2. h(kT) = h(NT - T - kT) k = 0, () - 1
3. The center of symmetry is between (%b and (g) - 1.

4. The delay is |

=N-1
2

the center of symmetry.
~For N odd
1. There is a uniﬁue peak in h(kT) at (N - 1)/2.
2. h(kT) = h(NT - T-kT) k=0, (N-1)/2
3. The center of symmetry is at (N -~ 1)/2

4. The delay is

the center of symmetry.
If the above conditions are met, the frequency samples H(ﬁ%) will be

_given by
My = Uk jom
Hgp = RGPl e
where, for N even

U m=0, -1

D
I
g
-
=]
n

(1-8)

<D
|

n = %%(N -mT m (g), N

2-10

and for N odd

=0, (N=-1)/2

<D
i
{
|
g
=
I

0 =-2ﬁT-'-(N—m)'r m (%)-i—l,N.
and

f
HEL) =S =0 .
2T 2

This concludes our brief description of

Frequency Sampling Filters [3]

linear phase filters.

(1-9)

(1-10)

The term frequency sampling filters refers to a class of digital

filters specified by sample points in the frequency domain and imple-

mented in the manner of Fig. 5. Many techniques have been suggested

for choosing the sample points

o
H(é%) = |Hm| P | m

including optimization techniques which adjust the points in the

transition region to give a good ripple

real impulse responée filters

0, N-1

between sample points.

For

(1-11)

2-11

_ ‘ Transition Region
******J ‘ﬁ///F— .

[]
|
» |
Pass ="' | Stop
Band R ' Band
| » [}
® |
I > i
| » |
: Yo i
] 1***&3!1———-_=-,—__9
(a) N-1
0 NT
1 Ho
. -1
1-2z
—-i-""““l"‘“7‘
l_z-lejZ'ﬂ' N

k1)~ 12N g

Comb
Filter *
1
= - lod2r(N-1)/N
’ Ay-1
(b)

Fig. 5. Frequency_Sampling‘Filter

k=0, N-1

2-12
lu, | = ey
=-9
em N-m
By the IDFT
N-1 o
h(kT) = | H(ZR) o (2n/Muk
m=0 NT
and
N-1
H(z) =) h(kT)z ¥
k=0
where
m
H(z) = HGD)
z = oi2m/N
Then
N-1 [N-1
H(z) = z Z H) ka z.k
k=0 | m=0 NT
or
N-1 HGE)
Hz) = (1-2Y NT
m=0 1 - z-lwm

(1-12)

(1-13)

2~-13
whefe

W= ej21r/N

"Equation (1-13) is the motivation behind the frequency sampling

implementation illustrated in Fig. 5b.

Windowing Filters [4]

In equation (1-2) a truncafion was performed (a fairly drastic
measure) to produce a FIR filter from an infinite impulse response
function. Windowing is the process of orderly termination of an
infinite series by truncating the series and adjusting the remaining
terms to mask the truncation effects. The transfer function for the

FIR is given in equation (1-1); its butput response is

m
y(kT) =] a;x(kT - iT).
1=0

Briefly stated, the problem is to find the coefficients a; of the

FIR filter H(z) such that
nel®T) = redh

jwT
where F(er) is some‘specified desired frequency response. The

design procedure is outlined below:

2-14
1. From F(eij), use the IFFT algorithm to find f£(kT).
2. Multiply f(kT) by a window function w(kT), or

h(kT) = £(kT)w(kT) (1-15)

The process is outlined in Fig. 6., Multiplication in the time domain

is convolution in the frequency domain, and hence
H(f) = F(E)W () .

The window function shown is a rectangular one which duplicates the

truncation process. Notice the ringing effect in Fig. 6c. The side-

lobes for this window are about 20%. Fig. 7 illustrates two other
windows. The triangular one reduced the sidelobes to about 4%. The

raised cosine window is the best one shown. Its function is
mt
w(t) =a+ (1 - a) cos ¥ (1-16)

If a = 0.50 it is called a Hamming window. The optimal value of a is
about 0.54. This value yields the Hanning window and reduces the

sidelobes to about 1%.

Moving Average Filter [5]

A moving average filter is a FIR filter which calculates the

average of the N most recent observations of the input:

2-15

F(eij)

Nl DN

(a) Desired Frequency Response

W(w)

' | v " P
— =

(b) Window Function

H(eij)

(c) . Windo&ing Filter

Fig. 6. Windowing Filter Construction

2-16

w(t)

| =
|-A A|
| |
| |
:(a) Rectangular Window |
' |
| 1 |
i |
| |
| |
|

-A A
| |
:(b) Triangular Window :
| w(t)

1 |
|]
I |

R . ‘

¢ 3>
-A A
(¢) Raised Cosine Window

Fig.

7. Window Functions

t

2-17

1 N~1 :
y(kT) = = } x(kT - £T)
' N =0
and
N-1
H(z) = %') -
£=0

In another form

-N
H(z) = %—1—'-2— i (1-17)
1 - z-1

Least Mean—-Square Digital Filters [6,7]

Assume that the filter input is x(nT), a random signal whose
autocorrelation Ryyx(t) is known, and that the crosscorrelation
Ryx(t) of this input and a desired output d(nT) is also specified.
Let the impulse response of the filter be g(kT), and its output,
z(kT). Allowing a shifted time scale,

N
z(nT) =)} x(aT - KT)g(kT).
. k==M
Define the signal D to be expected value of the difference in the

actual and desired filter outputs squared:

D = E[d(nT) - z(nT)]2.

2-18

By definition

R (t) = E {x(t + O)x(1)}

XX

Ry, (t) = E {d(t + 1)x(1)} ' (1-18)
Ryy(t) = E {d(t + 1)d(1)}

Substitution of these relations into D yields

N
D=Ryy(0) - 2] Ry(nDy(nT)
n=-M
(1-19)
N N
+)) R (kT - nT)g(kT)g(nT).
k=-M n=-M

The purpose of the least-mean squares filter is to minimize D by
choosing g(nT). Hence, if one takes the partial derivative of D with
respect to g(nT) and sets the result to zero, the following solution

is generated

N
"Rgx(T) =) R (kT - nT)g(kT) . -M <n <N (1-20)
k=-M
In equation (1-20), all quantities are known except g(kT). Hence,

the filter weights may be calculated from (1-20). Least mean-squares

filters are sometimes called digital Wiener filters.

2-19

Least Squares Polynomial Moving Arc Filter [5]

The problem here is to solve for the coefficients ay of a polynomial -
to best fit the input data y(tj) in a least squares sense. Each input

point is approximated by

}'(ti) = ag + alti + azt:% + *** + adtg

d
J a,tk
=0ki

If the input samples are evenly spaced,Ati = iT and

o d '
y(iT) = (1ink
Lo

For n input samples define

n d k
s= 7.) a (IT)" - y(iD)
i=0 k=0
In order to minimize S by choosing a,, one may take the partial
deratiﬁe
£

d d
3B - {2] a Dk -yun|] €D =0
day k=0 £=0

This expression reduces to

2-20

d

d d
I I aunfent -] yanent
k=0 £=0 £=0
Written in matrix form
CA =B
or
A=ct

" UB. (1-21)

In (1-21) the matrix C~1 represents the filter itself (whose coefficients
are precomputed) and B represents the system input. The output is A
which represents the polynomial coefficients ay .

Another form of polynomial filtering termed exponential filtering
allows the polynomial to grow by one term as each new input occurs.

Such schemes are called "growing memory" filters.

Digital Inverse Filtering [8,9]

Digital inverse filtering is a special case of least mean-square
filtering as described in equation (1-20). Suppose that the desired
filter output is

d(kT) =1, 0, 0, 0, **°

the discrete impulse function. Hence the crosscorrelation

2-21

Ry (D) = x(0), 0, 0, 0, **-

which can be scaled to unity (x(0) = 1). Equation (1-20) with M= 0

" then becomes

p- . -y - - - -

I'o rl I‘2 e I'N go 1
] rg r) ry-1 81 B 0 (1-22)
N rN—l rN_2 o | LgN_ L0]

where

ry = r;i = Rxx(iT)_ .

If the filter coefficients g4 are used in an FIR filter

N
H(z) =) giz-i
i=0 :
and the random signal x(nT) is applied to the input, the output will

be a digital impulse function. Therefore, H(z) is said to be an

inverse digital filter. The calculations involved are shown in Fig. 8.

2-22

Rex (D)
Eqn (1-22) — 8.
d (KT)
(a) Filter Design
N
R (KT) e iZO giz-i f———> 2 (kT) = d(KT)

(b) Filter Application

Fig. 8. Digital Inverse Filtering

2-23

Recursive Digital Filters

General

A recursive digital filter is a filter with feedback which, in
general, has an infinite impulse response. Its transfer function is

n
.Z'aiz'i .
H(z) = =0 | . (1-23)

1+) byz™d
i=1
where at least one a; and bi is not zero.
’ RécursiVe filtérs éénerally require fewer terms (lower order)
tﬁan a nog-recursive filter with similar characteristics. Higher
order recursive filters are usually factored into sécond order stages

‘which are either cascaded or paralleied.

Block Recursion [10]

One technique for implementing a desired recursive digital filter

of the form
(1-24)

is called block recursion and is shown in Fig. 9. The implementation

in Fig. 9b is

2-24

X(z) ——an H,(2) ——— Y(2)

(a) The Desired Filter

X(2) —L s Hy(2) +

|
|
|
1
I
FIR :
l
|
|
I
!
|
I
I
|

6(2) le— 2z fe—I

FIR Block

— ——— —— M — —— — o — —

(b) The Implemented Filter

Fig. 9. Block Recursion

2-25

H(z) = —M ~ . | . (1-25)

But the desired filter is

m . a
! R S
=1 1 -z

- Hy(2) =
n Q@ - ziz'l)
i=1 , :

where zj are the poles of the function H,(z).

‘The finite impulse response filter HM(z) is found by truncating each

component of Hp(z) to M terms, or

‘m 'ai[l - (ziz-l)M]

- Hy(z) =
4=1 1 - z4z71
- M
_ aiz--
e -t]
i=1 1 - 242
f;:_f:fgfil : ' (1-26)
T D(z2)
where
m aiz?D(z)
Q(z) =] ——— .
=11 - g2}

Thus,

Hy(2)D(z) = 1 - 2 Mo(2)

2-26

and
Qz) = 21 - Hy,(2)D(2)) o -27)

where Q(z) is a polynomial of order M-1. From the above relations it

is clear that if G(z) in HB(z) is chosen as Q(z), then

Hp (2) = Hp(z) (1-28)

G(z) = Q(2)

and the block recursive implementation exactly produces Hp(z), the
desired filter. Thus, we have shown that a recursive filter can be
implemented using one FIR HM(z) in the feed forward path and one FIR

G(z) in the feedback path, where

HM(z) =" truncated version of Hp(z)
M (1-29)
G(z) = z (1 - Hy(2)D(z)).
Some researchers have used the FFT to implement the two FIR filters
[11-13].

Example. Consider the filter

1 = _1
1+ azl + bz2 D(z)

Hp(Z) =

- 2-27

and let M = 3

-1 -2 1 -az"1+ (a2 - b)z"2
l+az " +bz V1
1+ az7l + pz?
- az7l - pz2
- az7l - 42,72 _ 5p-3
' (a?--b)z—2 + abz™3
Hence

H3(z) = 1 - az"l + (az-b)z"2

6(z) = 23Q1 - H3(z)D(z))

(2ab - a3) + (b2 - azb)z-l.

One can check the impulse response of HB(z) by dividing the

denominator into the numerator and comparing it with Hp(z).

Flat Group Delay Digital Filters [14]

In order to achieve a linear-phase digital filter one must choosé
a non-recursive structure. However, when the order of the non-recursive
filter is unacceptably larger, one is led to approximate the linear
phase using a recuréivevfilter»design whose error norm is the maximally
flat criteria.

Consider the recursive filter

2-28

H(z) = (1-30)

whose d.c. gain is unity. The phase response (T = 1) is given by

N W
Z aisin iw

ran~1 | 120 = o(w) (1-31)

1

n
Z as;cos i w

The ideal phase (-wt), where T is the desired delay is approximated

by minimizing

§(w) - ¢(w) (1-32)

I}
1
€
-

or

e(w) tan(8(w)) = - tan wt - tan (®(w)) .

The procedure is to make e(w) vanish at d.c., together with its

derivatives up to some order depending on n.

The solution yields the filter

. 2-29

.\ _ 2nl 1
H(z) = n! 2n
I (2t + 1)
i=n+l
(1-33)
[] 1
n n . .
"k . 2T +1. -k
I D @)1 Tk+1 -
k=0 kjmp 2T+ K

which is stable for all finite positive values of T.

2-30

Advanced Topics

In addition to the simple division of digital filters into recur-
sive or non-recursive categories, there are many other ways of identifying

their characteristics.

Complex Digital Filters [15]

A complex digital filter has a complex input x(nT), a complex
output y(nT), and a complex transfer function H(z). An example is
shown in Fig. 10. A lowpass envelope is centered at fC by replacing

z by e JucT 5 = vz in H(z).

n
Z azz—['
H(z) = =0n
-£
1+) bpz
=l Z
Hence
n
T vta,t
£ ©
Hs(z) = * (1—34)

n
1+ Z Yl’bez“’e
£=1

Complex digital filters have application in communication and
information theory, signal detection, randomly time-invariant channels,
etc. In one application they are used to generate the Hilbert transform

of a real signal x(nT).

2-31

H(f)

Hg(£)

Fig. 10. Complex Bandpass Filter

2-32

Randomly Sampled Filters [16]

A randomly sampled digital filter H(z) takes input samples of the

analog input signal x(t) at some random time
nT <t <nT+T

and stores them in an input buffer. The numbers x(tn) are then fed
to the filter hardware as evenly spaced samples x(nT). Hence, the
direct convolution of x(nT) and h(nT) produces the output y(nT)
which is interpreted as y(t,). The question arises what errors are
generated by the random sampling?

Define

n (1-35)

where Zn is a random variable. Also define

1]
"o
1]
b
~~
=]
+
N
=]
e’

x(tn)

(1-36)
x(nT)

[1]
b

2-33

If we expand §n in a Taylofvserieé about Z,

A

| : . w2,
Cxy = x, tx Z 0+ 1/2ann + -

whetg X, = é% x,, and define an input error &,

-

- ’ . ' — : - 2 L]
gn =X, - X = X2, + 1/2ann +

The output error due to random sampling is defined as

v = E(Zﬁ)
n = Efzﬁ)
E(E,) = 1/2x,v% 4+
E(sﬁ) = ;§v2 + (/4x2 + 1/3%5x)0 + -
. | n
(B = DB

2, . T2 :
E(ep) = E“(ey) +] hp_gvar(g)) .
: i=0 .

(1-37)

2-34

The frequency response error is determined for sinusoid inputs

x(t) = cos wt 0 <w < Ng

where N¢ is the Nyquist frequency m/T. The expected values of the

output steady state errors are

E(e)gs = (-1/202v2)H(ed?) cos nu
n
2 - nl 2 w2v? _ wlvh - whvh
E(e)gs = E"(e)gs + izohi 5 5 :

n 2,2 4,4 4,2 1
-) h2e-ii2w wv? _ Jwlv ey cos2nw

. e -
2 8
i=0 * 2 4

The physical interpretation of the results is shown in Fig. 11, where
Eped?)) = (1 - 1/202v2)H(ed?) (1-38)

In random sampling only the expected amplitude response is distorted
while the expected phase response is unchanged. The noise to signal

ratio for noise generated by random sampling is approximated by

.2
] h2 42,2
1=0

[a(edv) |2

NSR = 10 log ;g (1-39)

2-35

cos wt ‘1: : H(z) -—-___4;.'yn
n
(a) Exact Model
cos wt /T . .%(z) b 5

. (b) Approximate Model

Fig. 11. Randomly Sampled Filter

2-36

Random sampling finds wide application in time=-gsharing filters,
radar filters, and faulty samplers - all samples are faulty to some

extent.

Example. [9]

H(z) = __ 0.1
1-.9z71

and Zn has a rectangular distribution with o = 0.1, or 10% jitter
in the input sampler. The curves of Fig. 12 illustrate that as
frequency increases, the noise component increases making the

filter unusable above m/Nf = 0.3

Multirate Digital Filtering [17]

A multirate digital filter is one in which the samplers for the
'input and output are operating at different rates, one usually being
an integral multiple of the other. Much analysis of multirate sampled
data control systems has been treated in the open literature. Here
we exaﬁine three configurations of multirate filters demonstrated
in Fig. 13. Solutions for the sampled output frequency responses are

*k . v
W Gw) = L I 6w + j 210y Re(ju + j é%EQ
KT n=-o KT

-20

-60

2-37 -

0.5

Fig. 12. Random Sampling Example

"/ R*(s)

2-38

R(s)

fast

(a)

G(s)

W(8) / Wk(s) / Wkk(s)

Typical Multirate Filter

T

G(s)

KT
slow

X(s) , X**(s)

KT

slow

G(s)

Y(S)/

KT

R(s) — ' RECN 5y | BE) 7
’ T KT
fast
(b) Digital Prefilter
R(s) Fs) &) /S
KT
(¢) Analog Prefilter

Fig. 13.

slow

Multirate Digital Filters

Y**(S)

2-39

]

X**(ju) = i%,,z [%**(jm)ﬂ(jw + i%%E {] R*(j@ + ji;q)

n= -00

(1-40)
vrx(je) = L] |err(uF(ie + 1252)] R(Go + L222)
=m0 KT - KT
KT n .
These expressiones simplify greatly if the filter function G(s) is
band limited
l6GGw)| = 0 lo] > 22 . (1-41)

KT

The functions H(s) and G(s) represént prefilters uséd_to band limit

the input signal r(t) to prevent frequency aliasing.

Two Dimensional Digital Filters [18,19]

Two dimensional digital filters are used in digital image
processing. They are used to transform characteristics in photographs

or CRT images. The transformation is described by

Pl a2kt
LoL n“1%2 Az, z.)
H(Z ’22) - m—-O n—O = 1 2 . (1_42)
1 : E E m_n B(z;, zp)
bnz12)
m=0 n=0

and

2-40

where sy and s, are Laplace variables; A and B are the sampling intervals
in the x and y planar coordinates of the image being processed. The

two dimensional filter may also be expressed as
H(zy,25) = Z Z hmnszg (1-43)

where h; -~ is the impulse response.
Let us consider the stability of a two dimensional digital filter.

For a stable filter

o oo

I LI Ibgpl < = (1-44)

m=0 n=0
A two dimensional digital filter is stable if and only if no value of
~2) and zj exist such that
|21| <1, and

Izzl <L

2-41

Equivalent conditions are listed below: H(zj,zp) is stable if and

only if

1) The map B(zl,zz) = 0 of the unit circle lzll 0 to the 29

plane is outside the unit circle [zp| = 1.

2) No point in Izll < 1 maps into z2 = 03 or z9 0 maps

outgide the unit circle in the z; plane.

Example. Given the two-dimensional filter

1
1+ az, + bzz

H(zlizz) =

we may set the denominator to zero.
B(zl,zz) =1+ azy +bzy=0

to determine the following map

-321 .

22=- b

o'l=

Condition 1 is shown in Fig. 14.

2-42

AN

22

Z

-
N

o |~

}

Fig. 14.

Stability in Two-Dimensional
Digital Filters.

2-43

or.
|a| + |b] <1

for stability.

Condition 2 chéﬁks the point z5 =0 in the zy plane:

1
Z, = = =
1 a

but z must lie outside the unit circle, so

which is included in condition 1. Therefore, the example filter
is stable if the sum of the magnitudes of the coefficients is
less than one.

Non-recursive two-dimensional digital filters may also be designed

using wihdows, just as their one dimensional brothers. If wl(x) is a

good one-dimensional window, then

2-44

wo(x,y) = wi(V2 4 y2) (1-45)

will be a good two-dimensional window function.’

Example. Consider the one-dimensional window

w(x) =1 - le Ix[_i 1
=0 Ix| > 1

Then

W(w) = sin(w/2)/ (w2/4)

which has sidelobes of about 4%.

The two-dimensional counterpart is

1- V2442 %2 + y2| <1

W2 (x!}') X y

=0 |x2 + y2| > 1
Then, in the frequency domain

o)
Wy (wp,up) = 2n[p™3 [Jg(£)de-p23,(p)]
0

m%+w%

which has sidelobes of only 2%.

2-45

The reader is referred to the open literature where much two-

dimensional digital filfering theory is reported.

Adaptive Digital Filters [20]

A major advantage which digital filters hold over analog ones is
the ease in which a digital filter's coefficiénts may be changed while
the filter is processing data. Adaptive digital filters change their
coefficients to miﬁimize some épecified criteria.. Aﬁ exémple non-recursive
adaptive digital filter is depicted in Fig. 15a. The filter output is

(1) -
x(iT - kT) (1-46)
0 X

Il 1R

d(T) =
. k

where gél) are time varying coefficients calculated as shown in Fig. 15b.

géi+l) = géi) + Ae(i)x(iT - kT). ‘ ' (1-47)

The term e(i) is found by subtracting the filter response . from an ideal
response d(iT). The factor A is a variable step length which is

adjusted to improve the filter response in driving e(1) toward zero.

Floating Point Digital Filters

A fléating point digital filter is one which is implemented by
" a computing device which executes floating point afithmétic‘in calcu-
lating the filtér's difference equations. Both the filter's coefficients

and the signal variables are represented in the following format

2-46

x(1T-T) x(1iT-KT)

- —(

ae(1)

i (1 (1) g(i)
& & 2 K
X X T X
pe (1) L) Y 44m —
Z Response
+ d{iT) Generator

(a) Filter Block Diagram

x(iT-kT)

g(i)
k

(b) Time Varing Gain Generation

Fig. 15. An Adaptive Digital Filter.

2-47

F x RE : : o (1-48)

where F is a fraction expressed in radix R and E is the exponent value.

R is usually 2 in 16-bit minicomputers but is 16 in IBM 360/370 machines.

Digital filters are not usually implemented in floating point for several

reasons. Floating point hardware is slower_than fixed point and is
more costly. Perhaps a more important reason is that floating point
quantization errors in signal variables can cause system instability
whereas with fixed point arithemtic is guaranteed to be stable if the

filter coefficients yield stable poles in the z-plane.

Optimal Digitél Filtering

Optimal digital filters are filters used to minimize some per-
formance .evaluation criterion set for the discrete filter. 1In this
section, thrée topiés will be preséntéd:"l) the coﬁcept of optimi-
zation, 2) the optimal control law, and 3) state estimation.

Concept of Optimization [21]. A system may be described by n

first order linear or non-linear differential equations in the
independent variables X) 5 X, "‘xn. Any system can be so described
by the introduction of the appropriéte number of variables, henceforth

referred to as the state variables. The n differential equations are

x = f£(x,u,t) : : (1-49)

Suppose that a function

D)

2-48

mT
Vuw = [L(x,u,t) dt (1-50)
(o]

is to be minimized by choosing the forqing functions u(t) or some
other system pérameters} L represents the performance criterion
together with any terms which penalize or restrict the use of
forcing signals. The minimum value of V(g) is termed the cost.

A linear optimal system has the following characteristics:

(a) 1linear differential equationms

(b) the performance criterion has a quadratic form in the

state variables and forcing functions

(c) unrestricted forcing functions and state variébles.
Any system which does not possess all three characteristics is non-
linear.

Consider the linear system described by the following set of

first order differential equations:

%= Fx + Gu

(1-51)

y=He .

Now it is desired to calculate u(t) (given the initial values
x(0)) such that the cost function V(u) is minimized.

It is proposed to approximate the system by a discrete time version.
The time interval is divided into m equal sub-intervals T and the forcing

function u is to be held constant during each subinterval. The system

2-49

is considered to be described by a sequence of transitions from the

(k-1)th to the (k)th state.

Solving the set of first order differential equations,'we find

the following transition equation:

x(KT + T) = ¢(kT + T, kT)x(kT) + I'(kT + T, kT)u(kT) (1-52)
where
KT+T
T(kT + T, kT) = [¢(kT + T, T)G(T) dT.
| KT |

and ¢(t,T) is found as follows:

1. When F is time varying, ¢ is computed from

Cdfe(e,] - pee) o(e,T)

at

2. When F is constant o(t,T) = o(t-T) is computed by

- | k
e(e-T) = eFETT) -) [F(t-ty)]

k=o k!
The relationship between continuous and discrete systems is shown in

Fig. 16.

In addition, the integral to be minimized is replaced by the

summation

2-50

swalsAg 93210ST(Q pPUB SNONUIIUO) YL

walsA§ JO TIpOoR 91210SI(

(6)Y queem—

(IM)H

(IAT+HIN) D

-

N a@—

(MDH

d

€LV

wa3s4 g snonuyjuc)

‘97 314

(IR T+LN)

«——(17)T

()4

(Dx

(3)9 fe—o

()7

2-51
m-1 ,
V@mT) = T) L[u(kT), x(kT), kT] (1-53)
k=0
The minimization of V(mT) for discrete systems will be considered

for two cases: a) the optimal control law, and b) state estimation.

Opfimal Control Law [22]. Consider the continuous system equations

to be of the form,

x(t) = F(t) x(t) + 6(t)u(t)

H(t)x(t) - a-se)

y(t)

_ mT
V() = x (nT)Ax(mT) + [=xT(t)B x(t) dt
o]

mT

+ { uT(r) c(e)ulr) de
(o}

where A = terminal state weighting matrix

B(t) = state weighting matrix

c(t) control cost matrix.
The optimal controller is obtained by solving the nonhomogenous matrix
Riccati equation

ds _

T T SF- s + sec1(0)cTs - B(0). (1-55)

If F and G are constant,

S(MT) = (657 (WD) + ¢,,(WT)AI[$;; (@T) + 1, (mT)A]"L (1-56)

2-52

Where
STy | 11 %12
%21 %22
and
-F ccteT
M= .
B(0) FT

Once S(mT) is known, the optimal control vector can be obtained from

Bopt(t) = D(mT -~ t)x(t) (1-57)

where

D(mT - t) = C1(t)cTs(mT - t) -

In block diagram form, the optimum controller can be depicted as in
Fig. 17. Notice that to find Yot the state vector x(t) is necessary
for calculation of the optimal input. In most systems x(t) is not

available; y(t) is available instead. Hence, we "estimate' x(t) using

y(t) as shown in Fig. 17,

2-53

(X

walskg Toxjuo) fewildp /T 814

(D)X
103
10jBWISD) (I)x

wa3sfg snonuyjuo)

(- 1m)a

-

2-54

State Estimation [23]. It is desired to find an optimal estimate

é for the state variables x for a system defined in Fig. 17. The

_system output y is measured every T seconds; call the measurement

z(nT) = y(uT) + v(nT)

= H(nT) x(nT) + v(nT).

simplifying the notation

z = ann + v, (1-58)
where Y, is measurement noise and
Ty 2
Elv,vy] = RnSon
(1-59)
E[Yn] = 0.
The estimation scheme is to predict the present value of the state
vector by using the last predicted value and updating it with the
present measurement.
x () = 2,(=) + K [z,-Hyx, ()] (1-60)

where §n(+) and én(-) are estimates of the state vector Xn after

2-55

and before the measurement g, at time nT. The Kn is the optimum

weighting matrix. Let the error in the estimate be

() = x4 - x,

) . (1-61)

X (=) = x,(=) - x
Substituting (1-58) and (1-61) into (1-60)

2, (+) = (I - Kan);n(;) + ann , g | | (1-62)
Define

Pt = Elx, (+) x1(+)] | | (1-63)
However,

Elx, ()] = Elygxg(-)] = 0
because of uncorrelated measurement errors. Thus, (1-63) becomes

Pn(}) = (I - K H)P (-)(T - KH)DT + K R KL . (1-64)

The cost function to be minimized in state estimation is the sum of

the diagonal elements of the error covariance matrix Pn(+):

2-56

m-1 - -
van = | {EXI®x ®)])
n=o

The V(mT) is minimized by K, The solution is
= syl uT -1 ‘ Trp-1 _
Kn = P, ()Hn[HnPn()Hn + R,] Pn(+)HnRh (1-65)
Substituting Kn into Pn(+) results in
= T T -1
P_(+) = B (=) - P (-)HI[H P (-)HT + R 1™ H P (-). (1-66)
The equation set for the state transitions of the discrete system
X4l - fnXn t ¥n- (1-67)
Again, using (1-67) and (1-61) in (1-63)
= T -
A ORERIOTIE NP | (1-68)

where

w = T[T + T, kT]u(kT)

T, _
E[Ynym] - Qnamn

2-57

E[yn] = 0.
The results given above are now summarized in Fig. 18.

Nonlinear Filtering [24]

Reference [24] presents a class of nonlinear systeﬁs which obey a
principle of superposition. In particular, the synthesis of nonlinear
filters for signals which can be expressed as a ﬁroduct or convolution
of componenfs is examined. Practical applications in speech and image

processing are illustrated.

Range Adaptive Digital Filtering {[25]

InAmany applications the digital filter's input signal tends to
dwell near zero with occasional perturbations away from null. Range
adaptive digital filtering has automatic scaling of its input, internal,
and output signals to prevent arithmetic overflow. This is a hardware
concept and.will be further examined in PART 3, Mechanization of Digital

Filters.

Random Sample Skipping [26]

In certain time-shared applications of digital filter hardware
several input/outpuf sequences, say‘n, of numbers can be handled by
a single special-purpose computer which looks like n digital filters.
If the sampling rates for each filter is different, then inevitably
conflicts for the arithmetic unit will take placeiand certain input

samples will essentially be lost. This proceés can be described as

2-58

(1-68)
P, (t)

_
_ 0n ()OI + Q
_
_

(1-66)

| |
D - omlmg (Ot + r)™lag ()

|

|

— . d— w— —— S s m— ewe e e o— —

Time Varing Gain Generator

Continuous System

—I"I'lll’ll"

— e— e e— e

Measuring Device

|
u(t) nlqlA G(t) “ ¥ f x(®) H(t)

F(t)

(OHE[H (IR)7L

Fig. 18. The Continuous System with Optimal State Estimation

|
|
|
(1-65a) "
|
|
|
|
K, |
|
Discrete
Kalman Filter
| — - —_— o o — — —
| I {
o |
Z
| I
IJW¢*N - AT >
| rx® _
I _
L by !
| |
I _
! _ _
| H, |
|
[(1-60)|

2-59

nonlinear random sample omission. Reference [26] shows that in some
cases random sample omissions in a closed-loop system with random
inputs can be beneficial in reducing the mean-square value of a nulling

error signal.

Block-Floating-Point Filters [27]

Block-floating-point is a compromise between fixed-point and floating-
point arithmetic. In fixed point arithmetic no scaling is used for
addition or multiplication of numbers. In floating-point, automatic
scaling is performed for each product or sum calculated. In block-
floatiﬁg point arithmetic, numbers are expressed as a fraction and
exponent (as in floating point); however, scaling is perforﬁed dnce
for an entire expression instead of for each operation.

For example,
Yn = X tayypg T+ oagy,y : (1-69)

would be calculated as

w1 -

y = =

n A Yn
n

Yn = BpXn t aphpwy v +oaghjeyy

(1-70)

]
|

n - An-lxn

win = An—lyn—i

2-60

The scaling factors A, and An are powers of 2 and are determined as

follows
= 1
T
2
An = ApAn g

-~

where Cn is the maximum characteristic of the variables x,, Win, ">

VNpe In (1-70), the calculations for yp, xn; and wy, involve only

scaling (shifting). Once scaling is performed in Yn» then all the
arithmetic calculations are performed in fixed-point. The block-floating~

point realization is summarized in Fig. 19.

Sample-Rate Reduction Digital Filters [28]

There exists a direct relation between input sampling frequency
and the computational rate of the digital filter hardware implementation.
In order to prevent input frequency aliasing, two common practices
are to sample at a high rate or to use an analog low-pass filter before
the A/D converter. Reference [28] suggests sampling at a high rate
and using a digital low-pass filter whose output can be sampled at
a much lower rate to furnish the input signal for some digital signal
processing system. Advantages include the elimination of phase

distortions which are inevitable in analog aliasing filters.

2-61

1
~ . Ar]
AT
¥Iin
Y a,
Z
S
aj ‘
AT
Y2n
Y Ay
.
<
a
.
AT
w.
v Nn
A
//
.~
ay

Fig. 19. Block-Floating-Point Filter

II. TRANSFER FUNCTION SYNTHESIS

The synthesis of transfer functions for digital filters is
surveyed in this section. The survey is subdivided into nonrecursive

filters, recursive filters, and sample designs.

Nonrecursive Filters

The synthesis of nonrecursive digital filters consists of determining

the coefficients h; of the expression

M-1
H(z) =] bz . (2-1)
i=0

In the z-plane this amounts to placing zeroes anywhere in the plane

with all poles falling at the origin.

Specification of Frequency-Domain Zeroes [29]

The design of nonrecursive digital filters in the frequency domain
consists of specifying a finite trigonometric polynomial which satisfies
some criteria. Here the polynomial is defined by placing its zeroes.
The frequency charactrristic of (2-1) is defined as

M-1

H(f) = z hn e-jZ'nfn .
n=0

2-62

2-63

Replacing f by the complex variable ¢ = f + jo

M-1

H($) =Ky 1 [1- e 32m(47¢n)y o (2-2)
n=1
where
(6.} = {£y + dop)
e, < 1/2

The {¢,} are the zeroes of H(¢) in the central period. Hence, the'
scale factor K; and the M-1 central zeroes completely specify H(f).

The function is factored into stopband and passband zeroes

H(f) = Hg(£)H,(f) - (2-3)
where
Ng
Ho(f) = Kg I [1 - e~32m(£=¢,)]
n=1 (2-4)
Np
Hp(f) =k, T [1- e~32m(f-¥y)
n=1 .

2-64

Once the zeroes have been apportioned between the stopband and passband,
the passband and stopband zeroes are positioned to give a "good" shape

for H(f). The procedure is demonstrated in [29].

Frequency Sampling [30,31,32]

The technique of frequency sampling may be used to synthesize
nonrecursive filters as follows:

1. Choose a set of frequencies at which the sampled frequency
response is specified.

2. Obtain the values of the cqntinuous frequency response of the
resulting filter as a function of the filter parameters
(defined below) using the sampling theorem.

3. Compare the interpolated frequency response with the desired
filter and search for a minimum of some filter characteristic.

4. When the minimum is found, the parameters are used to realize

the nonrecursive filter.

The frequency samples in step 1 are specified in the passband
and stopband; however, in the transition region several samples are
left adjustable and these are the parameters used in steps 2 and 3.
The references [30,31] describe computer aided design programs which

essentially automate the optimizing process.

Windowing [19,31,33}]

Windowing filters, discussed in Chapter 1, are nonrecursive

filters whose finite impulse response is found by terminating an

2-65

infinite impulse response by means of a window function. The details

of the procedure have been demonstrated earlier.

Equiripple Filters [34,35]

Equiripple nonrecursive digital filters'may be designed by
minimizing the maximum error between some desired complex frequency

response F(f) and the FIR response as shown below

P/2 v
= =2nif L
E, = hpe k* - F(2WE£,) (2-5)
k p=p/2 ¢ . K
where
j=/1

hp = filter coefficients

P = even integer

fk = normalized sampled frequenéy
|fk| <1/2

2W = sampling rate.

Equation (2-5) may be minimized using the simplex method of linear
programming. Digital filters designed in this manner are sometimes

said to have minimax responses.

2-66

Recursive Filters

The recursive digital filter has the form

(2-6)

The synthesis of recursive filters is the task of choosing the
coefficients a; and by in order to force the filter to behave in some

specified manner.

Direct Synthesis in the Frequency Domain [36]

The frequency response for (2-6) is found by substituting z = ej2nfT

'Z’ aie-jZTrfiT
H(f) = 1=0 (2-7)
) bye d2nEIT
i=1

If N(f) is the numerator of (2-7), then

e-janiT j2wfiT

N2 = (] a)(] age)

n
H, + 2 kxl H, cos(2mkTf) (2-8)

where

2-67

{2=]
1]

n
2
]k
° k=0

It
]
Y]

iy

(r-9)=k P

Equation (2-8) may be further reduced to
t: 2k ’
|N(f)|2 = z @, cos (nTE), . _ (2-9)
k=0 ’ . v

where o) are constants. Hence equation (2-7) ﬁay be written as a

rational function in cos (nTf) [or sin(an)]. Any such rational

function may be specified by the roots of the two polynomials.
Consider the Butterworth lowpass filter in the analog domain

1, (£)]2 = L

1+ (5y?p
fe

Since the term sin(nfT) corresponds to f in the discrete case

lHy (£)]? = 1 | | (2-10)
1 + [singﬂng] 2p

51n(ﬂch)
represents a lowpass digital filter. To find the filter coefficients
solve for the roots of the polynomial. An example design in the

continuous case is presented later in this chapter.

2-68

Other filter types (bandpass, highpass, band stop, etc) may be

designed using this technique.

Sampled Data Transformations [37]

This section describes a mapping technique for designing recursive
digital filters. First, a suitable continuous filter G(s) is found,
and then a mapping function from the s-plane to z-plane is employed to
find the digital equivalent filter D(z). Hence, first we review
continuous filter design and then employ the sampled-data transformations.

Continuous Filter Design. The design of continuous filters can

be accomplished by first designing several low pass filter transfer
functions G(s), called prototype or normalized designs; the prototypes
have a critical or break frequency of one radian/sec. The prototype
is used to realize a filter for a given specification by using the

frequency transformations listed below:

Low Pass: s -+ s/wu

2
8¢ + w, w
Band Pass: s *> ——-Le'-
s(wu-wz)

s(w, ~wp) (2-11)
Band Stop: s + ——u b

2 4+
] (Uu(.l)z

High Pass: s +uw. /s

u

where

2-69

upper cutoff

€
[

low cutoff

up

Five prototype filters will be discussed in this section:

Butterworth, Bessel, Transitional, Chebyshev, and Elliptic designs.

Butterworth: The Butterworth approximation to the ideal low pass

filter is defined by the squared frequency magnitude function
l6w) |2 = 1/[1 + (W2)"] (2-12)

where n is the order of the filter. The Laplace transfer function is

given by

G6(s) G(=s) = 1/[1 + (-1)Rs2D]

or
n
1 .
G(s) = I —ern
j=1 (s f bj)
where
by = ~eM[(1/2) + (2§-1)/2n] i = /T

J

2-70

Bessel: The Bessel filter approximation for the linear delay function

e ' may be written

K
G(s) = —2 (2-13)
Bn(S)

where Kg is a constant term and Bn(s) are Bessel polynomials.

Bo =1
B1 =g+ 1

= (Ime 2
B, = (2n-1) B, *+s Bn-2

i/n
The roots of Bn(s) are normalized using the factor (Ko)

th

Transitional: The transitional filter combines roots of the n order

Butterworth and normalized Bessel filters according to a tramsitional
factor TF. Let
ry = magnitude of jth transitional pole

ry = magnitude of jth Bessel pole

ej = angle of jth transitional pole

D
|

15 = angle of §th Bessel pole

= angle of jth Butterworth pole.

<
N
[
1

2-71

the poles of the transitional filter are then described by

rj = rleF

<D
L]

62j + TF(elj - ezj) . (2-14)

Chebxshev:' Chebyshev filters exhibit better cutoff characteristics
for lower order filters than do the above designs. Chebyshev type I

and type II filters are defined by

|6, (w)]? R (2-15)
1 1+ eZTZ(w)
n
and
1
|Gy (w)| = (2-16)
2 T (w,.) 2
1+ ¢ —_n_ T .
T, (w,./w)
where
m® = cos(n cos™1lu) 0<wx<1
= cosh (n cosh'lm) w >1
TO =1
T, = w

2-72

= 242 -
T2 2w 1

T3(w) = 4w3 - 3w

The order of the filter n is determined by specifying inband ripple E

and the lowest frequency at which a loss of a db is achieved. Hence,

e = (108/10 _ 1)1/2
(2-17)

a2 = 102/10

and

cosh'lVAZ - 1/e

-1
cosh (wr)

n=

In equation (2-17), the variables E, a, or w, must be adjusted so the
n will be an integer. The type I filter differs from the type II in
that the type I exhibits equiripple in the pass band while type II

has equiripple in the stop band.

Elliptic: The Elliptic filter has equiripple in both the pass and
stop bands. Hence, this type design usually achieves the desired
frequency response with a lower order n than any of the above types.

The elliptic filter is determined by

2-73

1

lc(w)|? = (2-18)
1+ €22 (w)
where
K(k1) -1
. = sn [n"E?EY sn™L (w;k) kel n odd
’ Klky) -1
sn[K(k1)+ NE?EY_ sn (w;k);kll , n even
with
dw
f = Elliptic integral of the
0 [(1-02) (1-k242)11/2 first kind

sn[x;k] = w = Jacobian Elliptic function

K(k) = complete Elliptic integral of the first kind
/2 do
T a- K2s1n24)1/2
k = 1/m¥
k) = e(A2 - 1)-1/2,
e = (10E/10 _ 1y1/2
a2 = 102/10

where e, a, w,. were defined for the Chebyshev filter, the order n

is found by

2-74
K(kl)K(k)

n=s—"——"—"—""-"
K(kl)K(k’)
with

K- = (1 - k2)1/2

o 201/2
1 1 kl)

=~
1

The result of any of the five design methods results in a Laplace

transfer function G(s) for the desired frequency response.

Sampled-Data Transformations. Once the continuous transfer function

G(s) has been determined, the transformation to the discrete or z-plane
is made. Three methods of transformation will be presented: the
standard z-transform, the bilinear z-transform, and the matched

z-transform.

Standard z-transform: The problem of converting a continuous filter

to a discrete one was presented earlier. It was shown that

1
«
~
N
~

]

2[G(s)]

and that

2-75

E (s)

= (s) Z[G(s)]
s

But for small T

H
-3

Gho(s) *
Hence,

E (s)

TZ[G(s)] .
'Ei*(s)

Define the digital filter D(z) equivaleht to G(s) to be

D(z) = TZ [G(s)], ' | (2-19)

where Z[G(s)] is the standard z-transform of G(s). Hence,

n
D(z) =T) M
: k=1, _ e'Tbkz—l

. Note that the standard z-transform can be used only on bandlimited

signals (f < £fs/2).

2-76

Bilinear z-transform: The bilinear z-transform may be used to obtain

a discrete equivalent of G(s) as follows:

D(z) = G*(s)

s= /1A -zha+zHt (2-20)

Where G (s) is a continuous filter whose critical frequencies differ

from G(s) by
£7 = 1/7T tan (nf.T). | (2-21)

Relation (2-21) is used before the continuous filter G(s) is designed.
The new filter G (s) is designed instead and then transformed to the
z-plane by (2-20). The bilinear z-transform is a bandlimiting trans-
formation with relatively flat magnitude characteristics in the pass
and stop bands. However, the time response will be considerably
different.

Matched z-transform: The matched z~transform matches the poles and

zeroes of the discrete function to those of the continuous one. The

digital equivalent of the G(s) function is calculated as follows:

D(z) = G(s)

]

s+ay=1-zlea;T
-1_-b,T (2-22)
s + bj =1-2z"e";j

2-77

I1f G(s) has no zeroes, it is sometimes necessary to multiply (2-22) by

-1,N

(L+2z), N is an integer.

Summary: The standard z-transform is suitable for only bandlimited
functions, while the biliﬁeaf and matched z-transforms are suitable

for all filter types.b The matched z-transform requires G(s) in

factored form; standard, in partial fraction form; and bilineér,

in prewarped frequency form. The standard thransform preserves the
shape of the impulse-time response; the matched, the shape of the
frequency responsé; and bilinear, the flat magnitude gain-frequency
response characteristics. An example filter is designed and discretized

in the following example.

Design Exanple. In this section a digital filter will be designed

using the techniques summarized above.

Suppose it is desired to design a bandstop filter Gl(s) with

w,. = 200

2m(31.831)

wp = 170 = 27(27.056).

Multiplied times this filter will be a low pass filter Gz(s) with

0, = 600 = 2ﬁ(95.493), with a d. c. gain of 1.356., The band stop filter

will be designed from Butterworth, Bessél, and Chebyshev I prototypes

with n = 2. The low pass filter will be designed with n = 1. The

prototype of G,(s) = 1

s+ 1

2-78
The prototype filters for Gl(s) are found below.

Butterworth: The Butterworth filter is defined by

16, (w)|? = L

1+wl‘

Gl(s)Gl(-s) =

1+ 54
1
G (s) = -
1 (S - 313‘"/4) (S - eis’ﬂ'/ll')
Gy (s) = 1

s+ vV2 s +1

Bessel: The Bessel prototype is defined by

Ko 3

By(s) s + 35+ 3

G(s) =

Chebyshev I: The Chebyshev I filter is defined by

16, (@)]2 = —

1+ ezTg(w)

T,y (w) = 202 -1

c = (10E/10 _ 1)]_/2

2-79

A2 - 10a/10
cosh—l(v 2)
n= A "1/8 = 2
-1
cosh (wr)

Let E = 1,33 db, then

e = (10133 _ 1y1/2

.Let the filter gain be down 6 db at w_

w_ = 1.098
r

Hence,

2 1

6] = 7—
w -w +1.25
1
Gl(S) =
(s + 1.057 /31.75°)(s + 1.057 /-31.75°
1

G (s) =

s + 1.308s + 1.118

The analog filters are designed from the prototypes by setting

G(s) = Gl(s) X GZ(S)

§ & ——mmm—mm— s=s/w,
n

and adjusting the d.c. gain to be 1.356. The resulting filter equations

are given by

2-81

Buttetworth:
4468000s2+1.156X107
G(s) = 813.6 s oo Hbs
(s4+1272. 8s3+68900s2+4 . 3275X107 s+1.156X109) (s+600)
Bessel:
s4+68000s2+1.156X109
G(s) = 2440.8

(3s4+2700053+2.049X10552+9.18X107s+3.465X109)(s+600)

Chebyshev I:

s4+68000s2+1.56X107
(1.1188%+1177.283+7692452+4.0025%107 s+1. 2924X109) (s+600)

G(s) = 909.6

The filter equations above were plotted for db and phasé, ¢ , versus
frequency as shown in graphs 1, 2, and 3. Since the plots are nearly
identical, the Butterworth G(s) was chosen to be discretized by the
standard, bilinear, and matched z—transforms, with T = .001.

The Butﬁerworth design for G(s) may be written in partial fraction

expantion

40.567 2.4402X10~% + §7.5033%107°
s + 27.314 x + .35375 + j185.39

4+ 2.5502X107% - §7.5033%10"5
x + .35375 - §185.39

AONINOIY S , T ~alt49

| | o5 o & |
ol e e e
0/ O5-
6tk ST _
08- [.. _ m -
ol \ g
09- A e OF-
og-fEt- =
ob-firt- & oz-
¢
oz : e e saaa :
Q/ = } .r..-[..
3 0 SEas it _~ °
& o] ENe fang _L =

e 0Z

o

8 3288988
R

i
.llluﬂ, =1
1 Rmisly paran
T - b
Fa50 poa - T t - *
L84 gnaet RSt/ : ol e i
1 P Y i il B i1 - 1)
: 1 oo -
g o B P i 1
o} i 98] faany txguil dn ;
2 SR e ¢ P
. 1= LA R RERS v
el e SR igh! fExss T puls v Joal paupe sy
. T 1y | T T | I : i e
wivd : Ao ch bt t 1 28 404 AR 'S Bw I i i SR euE B BN
w wn - ” o~ A
(- a0 ~ “ n - L ~ -t
o ;o ~ L - L - - ~]
=

‘O UESSE © IR44ANAIN

+ + ® *v's'n w20
1t S2ZAt S cres by T oimmiivoeinas XM

ADNINO®IYS ’ _
os o7 c 2 HYND

1 T 1 10
I T 1]
T | ,,
!] i
1
, [=rkeg
m) 0
11
I
:
% -
N 1" ." T
v E) H Il
i- L [
i t Pl s
: T
RS T T ~
i P [{
M] 145
; ’ 31
; ; - 2
; =
Ay o ;
a8 - "
L) 1
I} 1 AN H
1 1 h
— ca b =N T
; : N —
e t i ’ 1 (8 £
— 1 M T
LEWRA T T T T i
! U i
) 1 i
il] 1
.'.
I Pr——
:
7
1
T
)
; 1
: !
T
- : —t
¥ I Wik b
Hi T 3 — 1 T
- ; L
RGN PR P S, 1
4 b3 et - : -
ol bu i i t - I .
T s . e SiE=eE
il sbed T 1 T 1 h PRSI s + + i
T T [7. 1 T 1 . 1
He - } } Tt) :
o L. ~ L ¢] - L o~
- "~ “w [- L] ~ -t
w o o ~ - “y - o ~ -t
“OD NASSA ¥ 1ALANAN
m <+ - + * YA NI BaYN SNOISIAIQ OFl X S3TIDAD € w I
Ilcdmﬂ WM €185 oY DIKHLINYDOY- INas 27

AININOFY EHWID

T T TR : =
g K T H T
! . ¢ Hf =
T T 1
T ot i Lyl
1 JUI N _ L)
1 sarsd teva vt f
i febed b :
o ” i
:
m T
o0/- ; - os-
+ 1 1
+ - 1
og- A ; vy penp "
[l B ; t T . T
b _ _
R g SRR ! - ; _ or -
- H
3 H
R -
Y A o Iy FERRLL
HH FEHT
I o ;
: N : ; :
ek
N ol T T
1t n T Nll
1 il . 1
ALEE T
e L P
: ; .
) e /-
RN 1 1
I 1
:
"
o
T -
. o
"
:
I
1]
1
"
I f
; T 3s: Qﬁv
- I 4 1
T Y iRE8d EanERg: :
it ! T
HHHH T THH
ran] I
i . , Hl WY T - lmpmJ
T ! ! i
e g 5 P 0 GO o S S H -
; “ EEs ey = Y :
v LEnak A ana b S me : e i
[-; [.- ~ «w wy - o” o~ -
- - ™~ o n « o o~ -y
o o o ~ w0 [- o’ L]
=
*OD YASSE § TAILNAN
i 4+ SeUe /) *2S ® Y'8°0 W13YN SNOISIAIG O¥1 X SIIDAD € w Y—
.m...\I.\l‘mlct €18S oy DIWHLINVOOT-INaS A%

I

2-85

+' 1642.1 , _-869.03

8 + 1244.8 8 + 600

The standard z-transform is taken

a
s +u 1 - e Uizl
and

a + ib + _a-1dib o [2a] + [2e"UT (bsinvT - acosvT)]z"l
s +u + iv s +u - 1iv . 1 + ['ze_UTCOSVT]z—l + [e-ZuT] 2—2

Hence,

4.0567X102 4.8803X10~7 - 4.420xX107z1
D(z) = +

1- .973062-l 1 - 1.9654z71 + .999292-2

1.6421 -.86903
+ +
1 - .28800z"1 1 - .548812z71

The frequency response of this function is found by letting z = gij.
The plot is shown in graph 4. Note that this response is entirely
inadequate. The standard z-transform is accurate only when G(s)

is limited to frequencies less than 1/2T, or in this case, 500 Hz.

This condition is violated as is seen in the plot of the continuous

Butterworth design G(s).

ADNIN®IY o

o HdYYD

2-86

1 I i1
T T
f i
:
1 ry
}
L, -
u
;
_ i ob-
=
“ |
T
1 =
: : og:
. -
i
“_
f
T ﬁ T
T 1 T
T 1T i
e 0z-
T | “ 1 t
! i =
- \W : -
: -
ra I
— T Q
N 1 1 -
1 1 i 1 \
T »m_ T
- T
T - t
““ T T IxI
t -
: 0
ey
T
1
1
T
r_.nuxu
A e
: 1 i suans B
! F P e ;
=i L E .
: i R Sagan B it e R Es
I 1 = H e
N [- ~ w0 wy - L o~ -t
o~
o o
e

€iss oY

-

0D URSSA @ 344NN
SNOISIAIQ OF1 X S3TIDAD €
DINHLINYDOTINAS

2

2-87

The bilinear z-transform requires a prewarped frequency scale for

the Butterworth G(s) design, so

w

wg = %-tan (7; T).

unwarped
200
170

600

‘warped
200.67
170.41

-618.67

The Butterworth design_to be used in this case is

s/618.67

G(s) = L X L -
s2 +V2s+1 s
g o _5(200.67 - 170.41) .
s2 + (200.67)(170.41)
446839252+1.1694x109
G(s) = 838.92 s siHl. .
s%+1294. 853+69308s2+4.4279X107s+1.1694X10°) (s+618.67)

G(s) = 838.92 (s2+3.4199%104)2

(5+26.987) (s2+.70708s+34199) (s+1267.1) (s+618.67)

2-88

The bilinear z-transform is found by letting

D(z) = G(s)
c-2 l-3z
T 1+ -1
D(z) = .19509 (1-1.9661z"L4272)2 (14,71

(1—.973372'1)(1-L9654z'1+.999302'2)(l-.224332'1)(1-.527492'1)

The frequency response for this function is found with z = J®T and is
plotted in graph 5. Note that this plot closely matches graph 1.

The Butterworth G(s) may be factored as follows:

G(s) = 813.6 (s-3184.39) (s+1184.39) (s~j184.39) (s+j184.39)
(s+27.314) (s+.35375+3184.39) (s+.35375-1184. 39) (s+1244. 8) (s+600) .

The matched z-transform is given by

D(z) = G(s)

-aT -1
- e z

(s+u+iv)(s +u=1iv) = 1 - 2e"TcogvTz-] + e-zuTz-2

AONINO®IYS .
oo/ o5 o/ c S HaVdD

T T
) T T
;
s

_ TRE.

SNEEE

N

2-89
Q

Jy

IRRRRURAN

o «© ~ 0O [y -+ ™ «~ -t

‘0D UESSA ¥ 1ZJANBN
® '¥°8°0 MI3aYN SNOISIAIQ O¥l X $3IDAD € NOY—
€185 9v DINHLINYDOT-iNIS

2-90

and D(1) is set equal to 1.356, the d.c. gain. Hence,

I (1-1.96612" 142722
(1—.97036z'1)(1—1.9654z‘1+.99929z‘2)(1-.28800z‘1)(1-.54881z‘1)

D(z) = .3460

The frequency response of this function is plotted in graph 6. Note
that the matched z-transform (like the bilinear) gives a good approxi-

mation to the response of graph 1.

Digital Compensators [38]

Digital filters are often employed as compensators for discrete
control systems. Two common techniques for designing these compensators
are root locus and Bode plots. |

Root locus. A typical discrete-time closed-loop control system

is demonstrated in Fig. 20a. Let

n

z aiz-i
D(z) =k =0 (2-23)

n
} byz™t
1=0

where K is a variable constant and ag = bg = 1. The root locus
technique is outlined below

1. Find the characteristic equation

1 + D(2)Z[Gy,(s)G(s)H(s)]

AONINOIFY S

AV
oS o/ 9 HIWYD

oo/

- tw B —+ I RERS 1 i1 1 1 g ! 1 {
- i 1 ¥ i EARS T T [2 T
T ifn i S T 2 FENN AR N
_ T I R BR1]
H 1T 11 + =
pusr . e H T } + 21 (fuel unu) —
: e &]
L—— T : it ;
+ LI I
Hr !
: i
I ¢
T
7]
! T
] i o
T i 8 SeRS
e ; — op-
I ; I T M
i 3 fn o
- e PEND RS p—— T
! i i i i i I
I __ 1 ! v I
h 1 i3 -
T L —F-F= T
RuRy i) 1
ot -4 — 1 Y)
b L t
—ie et t
! PN i
i T
iy o
— A N - : -
i Al -
i [N AP i A | -
Tt N,
! + T
b [s ta ey, — N :
: L :
4 :
t - - ~ \l
i e - = =0
: -
i b,
=
Tt S i
“ 1
i
1
o
] i »
! = A
_ 1 s
¥ T i =
T 1 T
T 1
i 1
8N -]
T
+ : t
: n 1
; f f : . il
: iy e e e =
+ T 1
> T T +
1 TT i T 7
+ o TH
T et I8 I3 i
I : I
s T S
R— = e
t = i
™ : —]
i Tt .
T L =
o ey il |
A et o = +
B N 1 O —
- - o d-L2 F—— -]
. -z jargd =
"
3 . Tl T
. Sy $ied iriiche S —
on og ~ w0 wy - - <~ —
» ©® N © ... - = ~ -
S e @ ~ © w -« L) ~ -~

TOD MESS3A W NA4dN3IN

-.c.u.ﬂi.uﬂnl uZO_m_>_OOQ—%mmJU>Uﬂ W°x
€)8s 9y DINHAINVYOOT- INIS

R(8)

2-92

D(z) / . Gho(s

G(s)

-3

H(s)

f o C(s)

(a) Closed-loop Control System

increasing K
———

(b) Typical Root Locus

Fig. 20. Root Locus

2-93

2. Place the poles. and zeroes of D(z) inside the gnit circle
in order to make the rootS~of tﬁe chéracteriétic equatién
stable for some range of K. ‘
3. Vary'K from 0 to » and solve for the closed-loop roots of
the characteristic equation.
4. Choose an appropriate value for K.
In practice steps 2 and 3 are repeated on a trial and error basis. Once
the procedure is complete, D(z) in (2-23) is completely specified.
Bode plots. Bode plots are amplitude and phase plots for a
transfer function constructed using the asymptotic behavior of simple
first and second order factors in the numerator and denominator of

the function D(s). The plots are

db = 20 log|D(j2nf)]

¢ = /D(j2nf) .

Once the proper frequency fesponsevhas been found, D(s) may be mépped

to the z-domain using the bilinear z-transform.

Frequency Sampling [3]

Earlier in this report the technique of implementing a finite
duration impulse response filter in a recursive manner was presented.
The coefficients must be integer powers of the first one for this

technique to be applicable.

2-94

Nonlinear Programming [34]

Nonlinear programming can be used to design both recursive and

nonrecursive digital filtera. The filter is written as

s 1+ aiz.l + biz'2

H = i (2_24)
() =¢ j=1 1 + ciz'l + diz'2
or
S -1
: a; + byz
H(z) = g+) 1”01 — (2-25)
i=l1 1 + ciz'1 + dyz
An error function is formed
2nf 2 2 :
E, = lu(ej i SY R £ T %Y k = 1,N (2-26)

where fi are the discrete frequencies, 2W is the sampling rate, and F
is the desired continuous frequency response. Note that Ey is every
where a differentiable function of ay, by, Cy» dij, and g. The errors

Ex must satisfy
=Ly < Ex < Uy k = 1,N. (2-27)

From (2-27) we may define

2-95

A
G = QU - Ep
k (2-28)
A
He = QL + B, k = 1,N
where Q. > O.
A penalty function such as
N N .
Q+) L+) X (2-29)

is formed. A suitable computer program (such as the Fletcher-Powell
algorithm [39]) is used to minimize the penalty function with respect
to Q, g, a3 bj, ¢y, and dj. Then the factor r is divided by a factor
and the process is repeated until Q becomes nearly constant. If Q is
less than unity the procedure stops; otherwise, increase the number
of stages s of the filter and’repeat the above procedure until a Q

is found less than unity.

Optimal Digital Equivalent [40]

In this section the problem of determining an optimal digital
equivalent D(z) for a continuous filter G(s) is considered (see Fig. 21).
The coefficients of D(z) are determined by fitting the input and outputs

of the two filters. Let

eod(j) = eo(j), ' - (2-30)

2-96

E (s)
E, (s) » G(s) / > es(t)

*
V=100 B > et (0)

Ei(s)

Fig. 21. The Equivalent Filters

2-97

and

E (z) a 4+ a 27l geeeqq M
= .0 1 n-1 (2_31)

Ey(z) 1+ blz'1 +"'+bnz_n

The problem then becomes one of choosing ap and bp in D(z) such that
(2-30) is satisfied. A difference equation for (2-31) is
n-1

n |
eod () KE age; (i-0) - Ezl bpeyg(i-0)- | (2-32)

=0
Substituting (2-30) into (2-32)

n-1 ' n
e(d) =] ape;(3-) - [en(3) + ZZ bpeo (3-£)] | (2-33)
: L

=0

where e(j) is driven to zero by minimizing e2(j), the meén squared

error.

In vector form (2-33) becomes e(j) = gT(j)c - ey(j) where,

£T = [ao’-o-’an_i’_bl’oo.,_b]

n
(2-34)
aT(3) = [eg () ** ey (i-ntl),eq(3-1), ¢+ e (3-m)].
The mean square error is
— N
e? = 1im 1/(281) § e2(§) (2-35)

Noroo j=-N

2-98

Equation (2-35) is minimized by

aez Y
==—=21lm 1/(2M1) § gq(3e(d) =0

ac Noeo j=-N
or
. N N
(1im 1/2M1] g(q (e = lim 1/281] g(ie,(3)
Noo j=-N N->c0 j=-N
[' N | i
R r
and

(2-36)

(8€-7)

2-99

(Le-0)

[(F)%(u-[)%...(F)%(1-[)%

.Acnﬁvomﬁcnﬁvom...Aawﬁvomﬁcnﬁvoo

(8-£)%8 (1-F)%. . . (I-)) %2 (1-) %

oo

(T4+NZ) /T WIT =

N-=(
| (D)% (14u-DFe...(H%(DT]] 2
N

_ _]

(ru-0 Fa(u-£)%. .. (0T (u-)%

I

_ (T+u-0) Fo(1-0) ... (O Te(1-0) %
|

(u-[)% (T4+u-F)%...(1-F) %o (1+u-)To

(u-0)%(H¥a...(1-H)% (DT

:AT9SOTD 2J10m 1 pue Y SUTWEXD SN

1

_AH+n-ﬁvﬁoAH+c-ﬁvﬂm...Aﬁvﬁmﬁﬁ+ayﬁvﬁm

_ T ﬂ. I N-=[woeN
(tT4u-0) "a(f)*a...([)*a(f) "® { (1#N2)/1 wrl = ¥

_ 4 N _

397 *SIUITOTIJB00 123TF3F Tewrido 9yl saal8 (9¢-g7) uoralenby

Equation

% o0 w»

where

2-100

(2-37) and (2-38) may be written

AB

[]
CD

rl = [E F.

elements of (2-39) are of the form

¢eiei(kT)
¢eie°(kT)
te e (kT)
deyeo (kT)
tejey (kT)
deqyeq (kT)

N

Ogy (kT) = lim 1/(28+1) |

Nooo

3=-N

x(J)y(G-k);

(2-39)

(2-40)

the ¢xy is the correlation function for discrete sequences. Since the

input signal power spectrum ¢eje;(s)and the analog filter G(s) are

known, (2-40) is deterﬁined by

Qeiei(kT)

¢eieo(kT)

and

tejeq (1)

-l[éeiei(S)G(S)]

T

'1[¢eiei(s)]

kT

T=

= @eoei (kT) N

(2-41)

2-101

ve e (KT) = ~[deses(s)G(s)G(-8)]
. t = kT.

The digital filter determined above should have higher order than

its analog counterpart so'thét the mean squared error will be small.

Sample Designs

'In this section some example digital filters are listed.

~ Bandstop Filter

A digital bandstop filter was designed earlier in this chapter:

.34607 (1~1.9661z"1+z72)2

D(z) =
- - -1
(l-.97036z'1)(1—1.9654z'1+.99929z'2)(1—.28802 1)(1-.548812)

(2-42)

The frequency response for T = 0.001 is shown in graph 6.

Digital Resonators

A digital oscillator is formed by placing complex poles on the

unit circle:

. 1
D(z) = (2-43)
1 - 2 cos(2 fT)z"l + 22

where T is the sampling period and £ is the frequency of oscillation.

Experimental results are available in [41].

2-102

Digital Differentiators [42]

The differentiator is a necessary part of many practical systems.
The digital differentiator may take many forms; perhaps the best is

a forth order recursive design shown below:

1-aba-vzha-czha -dzh (2-44)

D(z) = A
1 -ez"bHa - fz71ya - gz71y@@ - 21

where
A = 0.36804011 e = -,10779165
a = 0.99999949 f = -.87602073
b = -0.86810806 g = 0.33494085
c = 0.32672838 h = 0.51312758 .
d = -.44183252

This differentiator was designed using nonlinear programming.
A nonrecursive wideband differentiator can be constructed for N

samples by the relation

i
]

k/(N/2) k = 0, N/2

Gk
(2-45)

(N-k)/ (N/2)

=
]

N/2 + 1, N -1,

If the center samples are adjusted to optimally minimize the magnitude

error for N = 16, then

2-103
GN/Z = 0.92890015

G(n/2)-2 = 0+75000000

yields a peak error magnitude of 7 x 10'5 for an 80% bandwidth.

Low-Pass Filters [43-45]

Reference [43] presents some 9 ekample'nonrecursive low-pass filters
of order 11. The designs are found using prolate spheroidal functions,
least mean-square error, Fourier coefficients, windowing, binary
weighting, and minimax techniques. The reader is referred to Table 1

of [43] for the appropriate coefficients.

(/

III. COEFFICIENT QUANTIZATION

General [46]

One effect of finite wordlengths in digital computers is that the
filter's parameters, or coefficients, must be chosen from a finite set
of allowable values. Classical design procedures yield filter transfer
functions with coefficients of arbitrary precision which must be altered
for implementation using digital computing devices. One approach to
this problem is to select a filter structure (programming form for
the difference. equations) which is not sensitive to coefficient
1naccuraciés. For example, realizing a filter directly allows a
greater chance for instability than cascading or paralleling second
order modules because it is well known that the roots of polynomials
become more sensitive to parameter changes as the order of the polynomial
increases.

Any programming form, or structure, produces a grid of allowable
pole/zero locations in the z-plane. The proper structure to choose is
one for which the grid is most dense in the areas at which the poles/
zeroes must be placed for a particular design. It is obvious that
arbitarily rounding or truncating denominator coefficients could cause

poles to migrate outside the unit circle causing filter instability.

Instability Thresholds [47]

For low-pass filters, a measure of the number my of bits required

to represent the coefficients of a stable filter may be expressed as
2-104

2-105

m = i - N log,(2m BT) o - (3-1)

where

B = minimum attainable bandwidth

i-1 N i
2 i([N/2]>< 2

»for';he.direct programming form. For the cascade form

2 - (mb - 2)/2
- B = 20T . : ' (3-2)

These stability thresholds are valid for filters designed uéing direct
synthesis in the frequency domain for sine and tangent Butterworth low-

pass filters. The results may be extended to other filter types.

Reduced Coefficient Wordlengths [48]

The cost of implemeﬁting a digital filter via a speéialqurpééé'
computer is directly related to the wordlgngth of its coefficients,
However, a short wordlength éan_cause large deviations in pole/zero
placement. Hence a compromise must be found. The following procedure
represents one solution to the problem.

Let the transfer function of the digital filtef be

H(z) = ————— | o | (3-3)

2-106
where ¢ = 1. If we examine the desired frequency response Hw around
o

the unit circle

ij)I

|Hw(e 1 1in passband

(3-4)

0 1in stopband.

and is unspecified in the transition regions. If the maximum passband

and stopband deviations are defined as Gp and Gs

JjwT juT

IHw(ejQT)I - || < s’

or

. 1
e(ed®Ty = ap [1 - lHn(eij)[| in PB

-

ij (3-5)
) | in SB

Sg IHn(e

where € is the normalized error function and Hn(z) = K H(z), a normalized

transfer function.

The design of H(z) minimizes max e such that

max € < 1 (3-6)
using standard minimax procedures. If (3-6) holds for a set of parameters

a, then justification for searching for a second set a' of reduced word-

length which also satisfies (3-6), where

2-107

T v
_é = [bo’ see, bm’ co’ LR IR cm] .
' The coefficients are usually found for the cascade or parallel form.

The search for a new set a' follows a modified univariate procedure

which is described below:

1. Several sets of parameters, say 10, are stored in order of
minimum max €. :

2. Perform a univariate search on the best set 3. If no improvement
can be found, try a,.

3. Stop the procedure when no better improvement is found for
any stored coefficient a;.

Generally, rounding of the coefficients is first performed. A
‘uﬁivariate search reduces max € by 25 tq 502 over rounding, while a
modified univariate séarch produces the best results reducing max ¢
by 25 to 50% over the univariate search.

.In general, the development of synthesis procedures for quantized

digital filter coefficients remains an active area of research.

IV. NONLINEARITIES IN FIXED POINT ARITHMETIC

In digital computer implementations for digital filters, the
restriction of finite wordlength produces several nonlinear phenomenon.
Quantization occurs at the input sampler and in the internal arithmetic.
Saturation and overflow also manifest themselves. Inaccuracies in
coefficient representation has been discussed previously. Other noteable

effects which must be examined are limit cycles and deadbands.

Quantization Errors

A digital filter specified by equation (3-3) is implemented by pro-
gramming constant coefficient linear difference equations. The program
for the difference equations will consist of the arithmetic operations,
multiplication and addition (subtraction), and data transfer operations.
The arithmetic unit of the computing device must be furnished binary
numbers for the coefficients and variables.of the difference equations.
Since each coefficient and variable is represented by a finite number of
binary digits, the binary numbers supplied to the arithmetic unit are
quantized versions of the real numbers expected in the differénce equation.
Hence the digital filter introduces quantization errors into the system

of which it is a part.

Quantizer Types [49]

Signal amplitude quantization results from A/D conversion of the
digital filter input signal, and from arithmetic operations with in the
computing device itself. Three common types of arithmetic quantizers
are shown in Fig. 22; the step-length of each quantizer is h. Fig 22a
illustrates the quantizing characteristic for a roundoff quantizer. The
roundoff quantizer approximates the input signal ey by the closest quan-

tized value eiq as follows:) 8
=10

Ae

2-109

hdn

4 —> >
h e4 h eq
(A) ROUNDOFF (B) TRUNCATION
A..
eiq
3 4
2h 4
h
+ + ~+ + t ~3»
h 2h 3h e,

«©) LSB-l

Fig. 22. Three Common Arithmetic
Quantizers.

2-110

(4-1)

Therefore, the maximum error magnitude is %-. The properties of the
truncation quantizer is shown in Fig. 22b. This quantizer is less diffi-
cult to implement than the roundoff type; however, the approximation eiq
is less accurate:

0<e-e < h for ey >0

1 (4-2)

-h < e; - ejq < 0 for e; < 0.

Here the maximum error magnitude is h.

The third arithmetic quantizer presented in Fig. 22c is labeled LSB-1.
In LSB-1 the least significant bit of quantized binary words is always
set to "one." For this quantizer ejq 1s never equal zero.

-h < e -ejq<h fore >0

19 (4-3)

-h < e, - e.:

i ig £h for e; < 0.

Again the maximum error magnitude is h.
Signal amplitude quantization at the A/D converter usually takes two
forms. If the A/D converts the input signal magnitude to binary form,

then the quantizer characteristic of Fig. 22b for truncation adquately

2-111

describes the effect of the A/D. However, if a bipolar A/D is used, the
bipolar property is usually obtained by an offset bias voltage which

causes the bipolar A/D quantization characteristic shown in Fig. 23. For

this quéntizer

0 <ej-esq<h ‘ (4-4)

and the maximum error is h.

In summary, the maximum error magnitude introduced by a quantizer

at a sampling instant is

Roundoff: _h; = h/2

, (4-5)
Others: h3 = h ,

The quantizers of Figs. 22 and 23 may be represented in a system as
an additional input error signal; this process is shown in Fig. 24. Using
thié model fér the quantizers, their effect on system response will now '
be considered. Mathematical analysis of quantizing erfors may generally
be déscribed as steady-state analysis, statistical analysis, and error

bound analysis. Each of these analysis techniques will now be presented.

Steadx-Staté Analysis [50]

The steady-state .analysis may be divided into three steps. Firét,

find the z-plane transfer functions Tj(z) from the jth quantizing error

2-112

Ae
n-1 iq- SATURATION
h
-
— e e - e - - 2n—1h
SATURATION

N = WORDLENGTH OF A/D

Fig. 23. Bipolar A/D.

2-113

ei(kT) eiq(kT)
(o) THE jth QUANTIZER
1 QUANTTZER
r= - - = I
| |
1 | n, (KT) |
| |
| |
|
|)

ei(kT) | l eiq(kT)
| |
o e J

(B) MATHEMATICAL REPRESENTATION

Fig. 24. Mathematical Model for a Quantizer.

2-114

source Nj to the system output, e The total number of quantizers in

o.

the system 1s s. Hence,

s
Eon(z)-= jzl Tj(z)Nj(z), (4-6)

where Eon(z) represents the output due to quantization errors.

Second, assume each error source is a step input of the maximum

error amplitude h3 for the type quantizer being analyzed. Therefore,

Ny (2) = —— (4-7)

Substituting (4-7) into (4-6)

s T.(z) h!

Eg(2) = | =i, (4-8)
j=1 1 - z71

Lastly, apply the z-transform final value theorem [y(») = 1lim(1l - z'l)

z~>1
* Y(2)] to (4-8); thus,
s
eon(®) = lim Z T, (z)h!
z>1 j=1 1 3
L
= lim T (z)] hi.
j=1 L z»1 . 3
If one defines
KSsj = lim Tj(z) (4-9)

z~>1

2-115

then

s
. (4-10)
€on (™) = jzl Kgsj By

Equation (4-10) may be used tofevaluate the éffect of each quantizer on the
‘system output under steady-state conditions. |

Another technique for finding the Kssj weighting constants for (4-10)
is derived as follows. The standard z-transform for tj(t) is

-]

Ty(2) =] 5Dz | (4-11)
k=0 .

where kT represents a sample instant. Hence (4-9) becomes

K = t, (kT)
ssJ kZO 3

If tj(kT) tends to zero as kT gets large, say NT,

N .
Kegy = L 3D | (4-12)
k=0
may be used in (4-10) to calculate tke steady-state error. The terms
tj(kT) in (4-12) may be obtained from a simulation of the system by apply-
ing Njﬁi) = 1, a discrete impulse function,. Note that the weighting con-
stants are functions of the system characteristics and not of the quan-

tizers.

2-116

Statistical Analysis [51]

If the input signal to a roundoff quantizer Qj has a dynamic range
of more than three step intervals hj, the effect of the quantizer may»be
determined by replacing it with a unity gain and an additive white noise
nj(kT) (see Fig. 24) with a rectangular amplitude distribution density
function p(nj) of bounds jhj/Z and height 1/hj. The LSB-1 quantizer can
also be replaced in this manner with p(nj) bounded by +h; and 1/2hy. The
truncation quantizer cannot be represented exactly in this manner, but
this technique does give a good approximation with p(nj) bounded by
ihj and l/2hj. Let us continue by analyzing the roundoff case which
can be easily extended to the others.

The variance ci of this rectangular distribution is

3

2 * 2 l‘i
ny = / njp(nj)dnj =1, (4-13)

=00

When the dynamic range of the input signal is greater than three
quantization levels, the noise input of the quantizer is essentially un-
correlated between successive sampling intervals, and the autocorrelation

of the quantization noise becomes

(==}

@njnj(r) nZ-mogj (T - |TI)/T ITI < T (4m10)

=0 lTI>T

2-117

The sampled power density spectrum is defined by

@njnj(z) = ﬁz—co <I>njnj (nT)z™ ™ = onj-z‘ = -52— (4-15)

The mean-squared error output due to one quantizer error is

eonz(kT) = 1/2ni J(.annj(z) Tj(z)Tj(z-l)dz/z : (4-16)
I‘ .
where Tj(z) = Eon(z)/Nj(z), I is the unit cirecle, and i = Y=1. Substi-
tuting (4-15) into (4-16) and assuming that the total rms output error is

bounded by the sum of the s rms errors due to the quantizer inputs yields

s)
leon) rms i'jzl KStj hj ' (4_17>
where
_ 1/2
L : .
Kstj = [24n1 ij (z)Tj(l/z)dz/z] T (4-18)
r : :

The integral in (4-18) may be evaluated by calculating the residues of the

integrand.

Another technique for calculating the mean?square output error is by

using the following identity:

1 n/ig = 3 2
59 f F(z)F(1/z)dz/z = kz=0 f (kT)
I" .

Hence (4-18) becomes

| w | 1/2
i 2
Ksts [13 Lo 0D]

2-118

where tj(kT) 18 found from the impulse response in a simulation of the

system. If tj(kT) converges to zero for k large, say N, then

., X ,]1/2 |

This relation may be used instead of (4-18) for many applications.
Equations (4-18) and (4-19) are for roundoff only. They should be

altered by substituting hj = 2h3 into (4-17) for the general case.

Quantization Error Bounds [52]

th

Consider an n"" order system described by

x(k + 1) = Ax(k) + Dr(k)

(4-20)
eo(®) = Tx@) + d'r(®
where r(k) is a vector of the system inputs and e, (k) is the output.
The sampling interval T has been eliminated for convenience. The
introduction of quantizers into the system results in
Sk + 1) = Ax%(k) + Dr(k) - Bq(k)
(4-21)

e () = Tx1(0) + d"x) - £a®)

where gq(k) represents a vector of the s quantizer error inputs nj(k). A

state variable representation for the quantization error

2-119

v(k) = x(k) - x¥(k)

q (4-22)
eon(k) = e (k) - ey* (k)

results from subtracting (4-21) from (4-20)

vk + 1) = Av(k) + Bq(k)

' , (4-23)
e = el) + £lg (k).

The general solution for (4-23) is.

N-1 -
v = A () + J. A'Bq(N - 1 - 1) (4-24)
=0 , ‘
N-1 | | -
eon = cTAN(0) + T cTalBq(N - 1 - 2) + £lq).
: =0

For N large,

]
v =)

N1 |
j 1(1 A byJag - 1 - 0)
2=0 .

’ (4-25)
s N-1 T ' T
e (N) = ¥) ¢ Albj q; (N -1 -2) + £q(N).
on . = =yl -
: j=1\ 2=o0
th . th
where qj(N) is the j quantizer and Ej is the j column of the nxs

matrix B. Since, if a = be + de, Ialjjblxlcr+|d|x|e]

2-120

N-1

A 8
pool < (1 1#nl)layer-1- 0]
J=1\L=0
and
s ,N-1 N '
A% |)n’ -
v < j§1< zzo | _j|> y | (4-26)

where h3 = |qj(n -1- z)|max is given in (4-5). Similarly,

s - s (4-27)
TR ' '
DRI R G E) DR
In another form,
s
v, < jzl myhj
(4-28)
. s
Ieon(N)!max i'jzl Kubjhj
where
T 14t
= A'b ’ = 1,
= =0 —J . °
Kypg = 1 <l£TA’“£j|)+ l£51, 3 = 1, s. (4-29)
=0

Note that (4-29) gives weighting vectors mj and weighting constants Kubj

which are functions of the system and not of the quantizers. Hence, (4-28)

2-121

and (4-29) are useful in helping to choose quantization error schemes for
systems with digital filters.
A second method for bounding the output error due to quantizer Qj

is from the transfer function

The impulse response is found with Nj(z) = hj.,Therefore,

Eon(2) = Tj(z)h.:] B [kEO tj(k)z-k] h_.; . - (4-30)

To calculate the worst case output error €on due to quantizer Qj

leon®™ |1 < [kzo‘ &40 1] hJ. | | (4-31)

Similar to the argument employed for equations (4=12) and (4-19)

S
leon(N) lmax h3 jzl KUbjh:']

where

N
Kubj ~ kZO [ty [, 3 = 1, s- S (4-32)

Equation (4-32) may be used to calculate the weighting constants Kubj

instead of (4-29).

2-122

A summary of the results of the quantization analysis presented in

this section is displayed in Table 1.

TABLE 1: Quantization Analysis

8
Figure of Merit = I Constantj hj
i=1
Analysis Figure of Constantj
Method Merit
Steady Steady Kssj = 1im Tj(z)
State State Error z »>1
K : g (kT)
~ t
ss
3 k=oj
= 1/2
Statistical Root mean Kstj =11 Tj(z)Tj(l/z) dz
square error 6ni T z
[N
K., *l1z eqam? |22
st] = k|
L3 k=0
N-1 1.8)
Error Maximum Kby = L Ic A'b |+If |
Bound error
N
=) t; (kT)
Kubj k=0| j |

Open-Loop vs. Closed-Loop [53]

The quantization analysis procedures above are equally applicable

to open-loop or closed-loop systems. However, open-loop analysis of the

digital filter itself 1is perhaps the easier approach. It has been

shown in [49,53] that open-loop analysis can give satisfactory results

even if the filter is to reside in a closed-loop system.

2-123

Limit Cycles and Deadband Effects [46,54,55]

Consider the digital filter

y,=x +85y,, » 8=0.5 - (4-33)

implemented in fixed-point arithmetic with roundoff quantization. If

the input x, is a impulse function of value 7/8

yo = 7/8

yp = 1/2

yg = 1/4 | (4-34)
y3 = 1/8 | |

Yo = 1/8 n>4

is the resulting output sequence. .Ideally the output should go to
zero. This type error is called a limit cycle, and the amplitude
intervals within limit cycles are called deadbands. The deadband for

(4-33) is

| .
Va1l = Blyp-1l 2 (52 b

where b is the number of magnitude bits. Hence

NIF*

(3)270
lyggl < —— . | - (4-35)

1 - |8]

2-124

For the second-order filter

the deadband is
-b-1
lyn_zl :__Z________ : ‘ (4-37)

The deadband for higher order filters is directly dependent upon
the programming form. In general, the parallel form yields better
results because one need not be concerned with the ordering of cascaded

sections [54].

Saturation and Overflow [56]

When a filter is impleﬁented in one's or two's complement arithmetic

and signal values exceed the finite register length upper limit, a
overflow condition occurs and the results usually changes sign. This
condition can cause large limit cycles, called overflow oscillations,

to be excited. These osciliations may be avoided by using saturation
arithmetic as designed in [57,79]. One must be wary of this solution

for in many closed-loop control systems, saturating the signals causes
system instability. Saturation changes the filter output which

effectively alters, temporarily, the transfer function.

2-125

. Dynamic Range [46]

The dynamic range of a binary signal xp of b + 1 bits is
b : '
0 < x| <27 - 1. (4-38)

Increasing the number of bits by one doubles the dynamic range. As

seen in the last section, it is important that the dynamic range of

a digital filter in many applications ne?ér,be exceeded. Hence, several
techniqueé may'to employed to find b.

One technique finds the least upper bound on the signal kn-and

uses (4-38) to specify b and hence this limit can never be exceeded.‘
More practical solutions use simulation of the filter with typical
inﬁuts to define the dynamic range of the internal variables. Some-

times statistical methods are used for non-deterministic input signals.

V. NONLINEARITIES IN FLOATING POINT ARITHMETIC

In the past there has been little emphasis placed on research and
analysis of quantization errors at the output of a floating point filter,
the reason for this being that most filter implementations use fixed
point arithmetic. Sandberg [58] was the first to study quantization
error analysis for floating point filters with [59-62] being more recent.

As in the case of fixed point filters, quantization error for floating
point filters has three sources due to finite word length. They are

1) the quantization of the input signal X, into a set of discrete

levels;

2) the representation of the coefficients of the filter, ap and

bk,.by a finite number of bits;

3) the accumulation of roundoff errors caused by arithmetic

operations.

Notation
If we assume the ideal output of the filter is w, and the actual
output y,, the error at the output of the nth sample e, may be defined

as
€n = Yn = Vn _ (5-1la)
where

2-126

2-127

bz'[N
wn = X, - b Wn-k
=0 <0 k=1 ©

(5-1b)
Before the effects qf the above error sources are discussed, the repre-
sentation of floating point numbers with a fixed number of bits should
be considered.

A floating point number is written in the form (sgn)Zb'a, where b
is a binary integer called the expoment énd a is a fraction between
1/2 and 1 called the mantissa. As expected, the_range of numbers that
can be represented is determined by the number of bits of the exponent.
In order to represent a number v in floating point form with a t-bit
mantissa, the smallest integer exceeding log, v is first determined.
Thisvnumber is denoted by [log, vl. The binary expansion of the fraction
v/flogy vl is then rounded to t bits. If (v), deﬁotes the t-bit mantissa

floating point approximation, it is seen that
W) =v(@ + g) ' (5-2)

where the error is bounded by -2"t <e < 2_t, or [-2,2).

Error Sources

Both addition and multiplication in floatihg point afithmetic
introduce roundoff error. Let (vl'vz)t and'(vl + v2)t denote,

respectively, the actual computed product and sum of two numbers vy

and V23 then

2-128
(v1°vp)p = (vy V) (L + 6) (5-3)
(vl + VZ)t = (Vl +vo)(1 + €) (5-4)

where the errors 8 and e are bounded by [-27t, 27%),

The above errors will be regarded as random quantities and they
will be uniformly distributed in their range [-2t, 27t). Making these
and the above assumptions, a statistical approach will be discussed
which predicts floating point quantization errors.

First, consider the effect of input quantization. Supposing
the quantizer has equal step size h, the input to the filter is
x, + eg where each eg is bounded by -(h/2) §_e8 < (h/2). Since the
filter is linear, the output is the sum of the two components, Xp
and eg. In determining the effect of input quantization, eg is
considered as white noise with a zero mean and variance h2/12. The
steady-state output component due to eg is a zero-mean wide-sense-

stationary (w.s.s.) sequence with power spectral density
H(z)H(1/z) (h2/12) (5-5)
where H(z) is the transfer function of the filter as repeated below

M N
Hz) = (] az™)/Q+] bz (5-6)
k=0 k=1

2-129

Thébeffect of coefficient inaccuracy on roundoff accumulation has been
ignored.

An expression fof the mean-squared value of the error at the
filter's outpﬁt due to input quantization is obtained by integrating

the power spectral density (Equation (5-5)). It is equal to

1/2nj~}}H(Z)H(l/z)(h2/12)]/z dz : -7

Coefficient Quantization

Considering the effect of coefficient quantization, it is seen
that each coefficient is replaced by its t-bit representation
according to (5-2). This means the coefficient a, is replaced by
(ak)t’ which equals ap(l + o), with’dk bounded in absoluté value
by 2-t, Likewise, each bk is replaced by (bk)t which is by (1 + Bk)'
Because of this, it is abvious that the filter characteristics will
change. The problem can be approached in several ways. The first,
and the simpliest, is to compute the frequency response of the actual
filter with t-bit rounded coefficients by using the actual transfer

function
- M N '
H)], = (] (a)e 2799/Q +] (b)) 27" . . (5-8)
k=0 k=1

and then comparing the result with the ideal response of the original

design.-

2-130

Coefficient rounding can cause movements of the poles and zeroes
of the transfer function. When this happens, network sensitivity
theory can be applied to study the changes of the filter response.

If the poles of H(z) are at Z: i =1, N, and the poles of [H(z)]t

are at zy + Az4, it can be shown that

7 k+1 N '
pzg = 1 [T W @ - (24/2,))]/8ay (5-9)
k=1 m=1
m#i

where lday is the change in the coefficient a,. Likewise, reéults can
be obtained-for fhe movement of the zeroes. The change in the filter
response can be studied from these movements.

Instability of a filter may occur, due to coefficient error, when
a filter has poles that are close to the unit circle in the z-plane.
The problem can be serious when the sampling rate of the filter is
relatively high, even for low order filters in the direct form.
Kaiser [62] has demonstrated that for an Nth-order low-pass filter
operating at a sampling rate of 1/T with distinct poles at e_ka,
stability is guaranteed if the number of bits used m satisfies the

inequality

N
m, > [-log,[SA /2M2) (1 p,T)]] (5-10)
k=1

where the bracket denotes the samllest integer exceeding the quantity

inside. It is also possible to extend the result to include multiple

2-131

poles and to derive similar results for filters of other than low-pass °
type.

The effect of coefficient inaccuracy is more pronouncéd for a
high-order filter when it is realized in the direct form than when
it is realized in the parallel or éascade form, which suggests the
parallel or cascade form should be used for high-order filters when
possible. Further details on coefficient quantization are given in

Chapter 3.

Output Error

Roundoff accumulation error for floating point filters [59-61]
is quite different from that of fixed point filters and consequently
will be treated with more depth than that of fixed point. The errors
introduced are relative to Equations (5-2), (5-3) and (5-4). The
calculation of the statistical mean-squared error at the output will
be discussed for the direct programming form with the understanding
that extension to other forms is easily accomplished [61].

It has been shown that for floating point arithmetic the actual
filter coefficients are ak(l + ap) and br(1 + Bk) where ajp and Bk are
bounded in absolute value by 2~t. The actual computed output ¥n is
given by

M

: ' N .
vy, = £2I k-—z-O a1 + o)x) kzl b (L + Bidy] (5-11)

2-132

where f£[] denotes the actual computed result by floating point
arithmetic of the quantity Iinside the brackets. It is assumed that
the computation of (5-11) is carried out in the following order: the
‘products ap(l + op)x,_; and by (1 + By)¥p-i are first formed; the two
sums are then calculated; and finally the difference is taken to give
Yn° Each of these arithmetic operations introduces a round-off error
which is characterized by (5-3) and (5-4). A flowgraph of this operation
may be drawn, as is shown in Fig. 25, which includes all the roundoff
error introduced in the calculation of y,. From Fig. 25, it is seen
that dn,k is introduced when the product of ak(l + ak)xn—k is formed,
and 5n,1 is introduced when the computed products of ao(l + ao)xn and

a;(1 + a))x,_; are added. The actual output y, is then

M N
Yo = kZO ag (L + o)8 1%y p = kzl b (L + By 1Yk (5-12)
where
M
o= A +E)A+68,) T (1+1z,;7)
i=1
M
On,k = A+ EDQA + 6,) 1§k QA+, 4)s k=1,2," M
N
on,1 = a+ En)(l + en,l) I @+ nn,i)
i=2
N
¢n,k = (1+£)Q+ e k) T (1+mn,4), k=23, L (5-13)

4=k

2-133

a°(1+00)xn . ¢ b1(1+81)yn_l
14§ : ' 4e_
n,o n,
1+¢Sn 1 : 1+En 2
1 b4
a, (I+a))xO7 by (+8y)y2
1+;n,l 1+nn,2
146 1+e
R n,2 _ L ____on'3 b3(l+33)yn_v_3
a2(1+a2)xn_2
1+
n,2 14n

1+6
QbN(l+BN)Yn_N

=

(o
aM (l+qM) n-M

Fig. 25. Flowgraph of Equation (2-81).

2-134

The quantities Gn,k; %n,k’ "n,k’ €n,k’ and £ are the errors introduced
at each arithmetic step and they are independent random variables uni-
formly distributed in [-27t, 2-t),

From Equations (5-1) and (5-12) it can be shown that the error

e satisfies the following equation:

n

N
) bee =u' +u" (5-14)
k“n-~
k=0 n-k n n

where bo = 1 and

M N
u' =) aox . - J bBw _
n k=0 k*k*n-k kel k"k n-k
M N
no_ 8 - - -1 -15
uy kZO 3 (Op ke ~ Dx kgl by (e = Dvipge (5-15)

In the above equations u!

n is due to coefficient rounding; u; is due

to roundoff accumulations and the input X, is zero mean and w.s.s.

Both components uﬁ and u; have zero mean and are w.s.s., and they are

uncorrelated, this being because 8, . and ¢, y have a mean equal to 1
H H]
and are independent of x, and LA

From Equation (5-14), the error sequence e, is zero mean and w.s.s.

with a power spectral density related to those of uy

and ug by

Pee(2) = [1/(D(2)D(1/2)] [8y1 1 (2) + O nyn(z)]. (5-16)

2-135

o,y (2) is calculﬁted from Equation (5-15) and is given by
8 1 1(2) = IB(2) - K(2)A()]" [B(L/2) - H(1/2)A(1/2)]8, (z) (5-17)

where H(z) (Equation (5-6)) is as previously defined and

N
_ -k
A(z) = kzl b, By2
M |
B(Z) = z akakz'k . (5-18)
k=0

Concluding from Equations (5-13), and (5-15), ug is white noise with

power spectral density as follows;

¢u;.u;.(z) = q%/2nj f(F(Z) + G(z)H(2)H(1/z)
-N(1/2) [D(z) - 1]H(=z)
-N(2) [D(1/2) - 1]H(1/2))%,(2)/z dz (5-19)

M :
where N(z) =) akz—k is the numerator of the transfer function in
_ k=0
Equation (5-6) and

11
F(z) = a.F z
k=0 1i=0 ot k,i

k-i

2-136

N Ig .
G(z) =) b a,G, (z+
Lyl TR
M+ 2 - max(k,i), k#iork=1=0
Fo g =
L M+ 3 -k, k=1i#0
N + 2 - max(k,i), k#iork=1i=1
Cp,i =
N+ 3 -k, k=1i#1 (5-20)

The mean squared value of the error e, can now be calculated from

¢ee(z) by using

E{ei} = 1/2ﬂj Jﬁ @ee(z)/z dz. (5-21)

VI. PROGRAMMING FORMS

The structure of a digital filter is described by a unique set
of constant coefficient linear difference equations. These difference
equations constitute the digital filter's programming form. As a general
rule, for any programming form the lower the order n of the filter
transfer function the smaller the efror introduced into the system by
coefficient and signal amplitude quantization. Consequently, a nth
order filter is usuaily factored into second-order modules which are
paralleled or cascaded to realize the higher orders. The second-order
is chosen so that complex poles and zeroes are realizable.

The z-transfer function for any second-order module may be expressed

a + alz'l + azz"2
(6-1)

D(z) =
1+ blZ 1 + bzz_z

The eleven programming forms presented here will be for the second-order
module of equation (6-1). For a higher-order digital filter, the following
procedure applies: 1) Section D(z) into second-order modules, 2)analyze
each module using the computef—aided design brocedure to be developed
1atef, and 3) cascade (or parallel) the resﬁlting designs to realize the
original D(z).

This section will summarize, for equation (6-1), eleven different pro-

gramming forms and the attributes of each needed for quantization analysis

2-137

2-138

by steady-state, statistical, and upper-bound techniques. 1In particular,
the transfer function Tj(z) from the jth quantizer to the filter output
for equation (4-9) and (4-18), and the discrete-time difference equations
necessary for the impulse response from the jth quantizer to the filter
output for equations (4-11), (4-19), and (4-32), will be listed for each

programming form. The tabulation of the eleven programming forms is

a result of [38, 63-66]. Many others are possible as seen in [67-70,76].

The direct progr;mming form for equation (6-1) is shown in Fig. 26.
This form has am A/D or inmput quantizer, Q;, digital-to-analog (D/A) or
output quantizer Q, and one internal feedback quantizer Q3. The transfer

functions from each quantizer to the output are

Tl(z) = D(z)
Tz(z) =1 (6-2)
-1 =2
b,z + b,z
T3(z) - 1 2

1+ b]_z"'l + I:uzz'2
The integrands for equation (4-18) are thus

2
12 + az)(a0 + a,z + a,z)/b2

z z(z2 + byz + bz)(z2 + blz/b2 + 1/b2)

Tl(z) Tl(l/z)) (aoz2 + a

T,(2) T,(1/2)

z

1 (6-3)
Z

2-139

e (k)q3

Fig 26, The Direct Form.

2-140

@ T3/ gz b (b ¢ bz’ /b,

z z(z2 + b,z + b2)(z2 + blz/bz + 1/b2)

For programming and impulse testing the difference equations for the

direct form are

ei(k)q = ei(k) + nl(k)
eo(k) = aoei(k)q1+ alei(k - 1)q1+ azei(k - Z)q1

-bleo(k - 1)q3 - bzeo(k - 1)q3 (6-4)

eo(k)q, = ey (k) + n,y(k)

eo(k)q3 = eo(k) + n3(k).

The filter output variable is eo(k)qz' This completes the description of
the direct programming form.

For all eleven programming forms the standard notation of Q; for
the filter input quantizer and Q2 for the filter output quantizer has been
adopted for convenience. The transfer functions Ty(z) and Tz(z) are then
always to be for the input and output quantizers respectively. These
transfer functions will be identical for all the programming forms as

given in equation (6-2),

Modified Direct Form

The modified direct programming form for equation (6-1) is shown in

Fig. 27. This form differs from the direct form only in the feedback

2-141

Fig. 27. The Modified Direct Form.

2-142

loop. This form has two internal quantizefs; Q3 is identical to the
direct form hence T4(z) is given by equation (6-2); Q, has been added and

its transfer function to the filter output is displayed below:

z—l

1+ bzt + bzz_l (6-5)

T4(Z) =

The integrand for equation (4-18) for Q4 becomes

T,(2) T,01/2) 2% /b,

(6-6)

2 2(z + byz + by) (2% + byz/b, + 1/by)

1

For programming and impulse testing the difference equations for

the modified direct programming form are

ei(k)q = ei(k) + nl(k)

eo(k) = aoei(k)q + alei(k - l)q + azei(k - 2)q

+ m(k - l)q
eo(k)q2 = eo(k) + nz(k) (6-7)
eo(k)q3 = eo(k) + n3(k)

m(k) = —bleo(k)q3 - b2eo(k - 1)q3

m(k)q = m(k) + n4(k).

2-143

Standard Form

The standard programming form for equation (6-1) is presented in Fig.
28; This form has two internal quantizers, Q3 and QA’ Their transfer

functions to the filter output are

1

T,(2)
3 z2 + b,z + b2

1 (6-8)

Z+bl

T4(Z)_

7 .
2 + b,z + b2

1

The integrands for equation (4-18) are

T,(2) T5(1/2) z2/b2

z z(z2 + b,z + b2)(z2 + blz/b2 +'1/b2)

1
(6~9)

T,(2) T,(1/z2) (z + b)) (z + byzA) /b,
z 2

z(z" + byz + bz)(z2 + blz/bz + l/bz)

The difference equations for this form are

ei(k)q = ei(k) + nl(k)
eo(k) = aOei(k)q + my(k - l)q

eo(k)q = eo(k) + nz(k)

my (k) = aje; (k) = bymy(k - 1)g = bymy(k - D, (6-10)

2-144

Fig. 28, The Standard Form.

2-145
ml(k)q = ml(k) + n3(k)
my (k) = alei(k)q + ml(k - 1)q

mz(k)q = mz(k) + n4(k)
where

ay) = a; - aob1

Modified Standard Form

Again the modified standard form is for D(z) as expressed in equation
(6-7) and is demonstrated.in Fig; 29. This programming form differs from
the standard form in its feedback loops. The same internal quantizers
are present as before with a fifth quantiéer added. The transfer func-

tions for the three quantizers are

T4(z) = T3(z) in (6-2)
T4(z) = T3(z) in (6—85
T5(z) = Té(z) in (6-5)

Hence, the integrands for equation (4-18) have been previously shown.

2-146

Fig. 29. The Modified Standard Form.

2-147

For prbgramming, etc., the difference equations for the modified

standard form are

ei(k)q = ei(k) + nl(k)
eo(k) = aoei(k)q + my(k - 1)_q
eo(k)q2 = eo(k) + nz(k)
eo(k)q3 = eq(k) + n3(k)

: (6-11)
ml(k) = azei(k)q - bzeo(k)q3

my(k) = age; (kg + my (k - g - breg (kg

mz(k)q = my(k) + nS(k).

Canonical Form

The block diagram for the canonical programming form limited to
the second-order module of equation (6-1) is shown in Fig. 30. This

form has only one quantizer Q3 whose transfer function to the filter

output is given by

T3(z) = D(z).

2-148

Fig. 30. The Canonical Form.

2-149

Therefore, Q4 has the same effect as the input quantizer on the filter
output. The difference equations including quantization are shown

below:

e () = e; () +n (k)
m(k) = e;(k)q - bym(k = 1) - bym(k = 2),

m(k.)q = m(k) + n3(k) :
: (6-12)

eo(k) aom(k)q + alm(k - l)q + azm(k - 2)q

eo(k)q = eo(k) + nz(k).

‘Modified Canonical Form

The modified canonical programming form for tﬁe second—order D(z)
of equation (6-1) is depieted in the bloék'diagram of Fig. 31. Thisvpro-
gremming form differs from fhe canonical form by its_fofward transfer |
paths. By movihg the muleiplier coefficient from m(k)q to ei(k)q the

transfer function for Q3 is changed:

a2z + a :
2
T3(Z) = 2 1 N (6"13)
2 + blz + bz
‘ where
al = al - aobl

0.2 = az - aobzo

2-150

Fig. 31. The Modified Canonical Form.

2-151
The integrand for equation (4~18) for this transfer function is

T3(z) T3(l/z) L (alz + az)(alz + azzz)'

(6-14)

7
z 2(z” + byz + bp) (2% + byz/b, + 1/by)

The difference equations for the modified canonical programming form are

shown below:

e, (1) = e, (k) + 0y (k)

eo(k) = aoei(k)q + alm(k - l)q + a2m(k - 2)q

eo(k)q'= e (k) + ny(k) | .(6—15)

m(k) = ei(k)q - blm(k - 1)q - bom(k - 2)q

m(k)q = m(k) + n3(k).

Thé six programming forms discussed to this point have all required
the programming coefficients a; and bi of equation (6-1), or were easily
calculated from them. The last five forms which are to be presented now

will require more effort to find the correct form for D(z) and the proper

programming parameters for the difference equétions.

2-152

Parallel Form

The general block diagram for the parallel programming form for
a second-order D(z) 13 shown.in Fig. 32. The form may be used if
and only if the second-order module has real poles p; and p,. Hence,
D(z) must have the form

D(z) = ao + P11+ &y (6-16)
z-p; z-p, -

The constants R1 and R2 are real numbers representing the residues of

poles P, and pz,and Py should be different from Py-

The coefficients g; shown in Fig. 32 must satisfy the following

relationships:
8182 = R

152 1 (6-17)
8384 = Ry

In order to minimize the magnitude of the parameters g; the following

choices were arbitrarily made:

gl= ‘lRll
8y = Ry/g;

g3 = VIR,

(6-18)

The transfer functions from the internal quantizers to the filter
output were obtained:

82

T3(z) = (6-19)

2-153

Fig. 32. The Parallel Form.

2-154

84

T (z) =
4 z=p, -

The integrands for equation (4-18) corresponding to (6-19) are

T3(z)T3(1/z) = —gg z/pl

z z(z-py) (z-1/py)
- ! ! (6-20)
- o2
Ta(z)Ta(llz) = -g, z/py
z z(z-pj) (Z'l/Pz) .
The difference equations for the parallel form are
ei(k)q = e;(k) + ny (k)
ey (k) = aoei(k)q + gzml(k-l)q + g4m2(k—1)q
eo(k)q = eo(k) + nz(k)
(6-21)

m (k) = ge; () + pymy (k-1)
ml(k)q = my (k) + nj(k)

m, (k) = g3ei(k)q + pzmz(k—l)q
my (k) = my(k) + ngk) .

Please note that the parallel form can realize only real poles, but

it is capable of realizing either real or complex zeroes.

Cascade Form

The cascade programming form for a second-order digital filter
module essentially factors the module into first order stages and
realizes each stage individually. If each first order stage is

implemented in the manner of Fig. 30; the resulting cascade form is

2-155

shown in Fig. 33. A requirement for this form is that

D(z) = a, (z—q;) (z-q;) (6-22)
(Z-Pl) (Z'Pz) ’
where q; and p, are real zeroes and poles. Also, the following
i v

relationships must be satisfied:

aO = g1g2g4

83 7882 - . (6-23)

8 ="8,8,

The cascade form has two internal quantizers which are described

by the transfer functions

T3(Z) = D(Z)/gl
(6-24)
T4(Z) = 8y 279
7,
The integrands for equation (4-18) are
T3(Z) T4(1/2) = 1 D(z) D(1/2)
81 z
. ‘
(6-25)

T,(2) T,(1/2) = -g;(z=p) (1-4,2) /p,

z z(z—pz)(z-l/Pz) .

The difference equations for this cascade form are displayed below:

ei(k)q = ey (k) + n;(k)
. (6-26)

ml(k) = glei(k)q + lel(k-l)q

mi(k)q = ml(k) + n3(k)

2-156

Fig. 33, The Cascade Form.

2-157
my(k) = gymy (k) + ggmy (emD)g + pymy(k-1)
mz(k)é = m,(k) + n4(k)
eo(k) = gymy(K) + ggmy(k-1)
ey () = eg(k) + my(k) .

The parameters g;, i=l, 5 in equation (6-26) must be found using (6-23).
Since there are three equations with five unknowns, an arbitrary choice

for g; and 89 is made as follows:

g1 = 1.0

By = Vlaol.

If a, is zero, this form cannot be realized.

(6-27)

This completes the cascade form. In summary, this programming form
. .

is applicable to a second-order digital filter module when it is

possible to cascade first-order stages programmed in the canonical form.

Modified Cascade Form

Of the many possible ways of implementing first-order stages,
one other techrique was selected which employs the modified canonical
form for each first-order section (see Fig. 34). This programming
form is labeled modified cascade; it requires D(z) to be factorable
into real poles and zeroes as in equation (6-22).

The transfer functions from the three internal quantizers to the

filter output are given below:

T,(2) = g384(2-q3)

(z-p1) (2-py)
1 2 (6-28)

2-158

%/

AR Ao
m3(k eo(k)

m3(k)q
<"2|

Fig. 34. The Modified Cascade Form.

2-159

Z;q2
14(2) - g4 .
P2
TS(Z) = g6
Z-Pz ’
where the parameters g, are restricted by
8184 = 3
8,83 = (P1-97)8; (6-29)
g858¢ = (P,-4,)8, -

Since there are three equations and six unknowns, arbitrary choices

are again

made for 81> 89» and g, as follows:

g1 ~ Mgl

g, = (pyt1)/2

g3 = (P1741)8,/8 ' (6-30)
8, = ao/gl B

gs = (py+1)/2

gg = (Py=4,)84/85

Using these parameters, the following difference equations may be used

to implement this programming form:

e, (k) = e; (k) + ny (k)

m, (k) = glei(k)q + g3m1(k—1)q

my (k) = mp(k) + ng (k) (6-31)
eq(k) = g my (k) +.g6m3(k—1)q

eo(k)q = eg(k) + n,(k)

m, (k) = gzei(k)q + plml(k-l)q

ml(k)q = m (k) + n3(k)

2-160

n () = gomy() + pyml-l)

X1 Structure

The last two programming forms to be presented are designed
for a second-order D(z) with complex poles. The appropriate

expression for the transfer functiom is

- %
D) =2 ¥ AT S (6-32)

where a, has been previously defined, p and p* are complex conjugate
poles, and A and A* are complex conjugate residues.
The first implementation of (6—32) is depicted in the block diagram

of Fig. 35. The parameters indicated in the figure are defined below:

-Re (p)

= Im (p)

(o]
[\
[

(6-33)
2 Im (A)

2 Re (A) .

&4

The two internal quantizers, Q3 and Q4, are described by the

transfer functions

T3(z) = 82 (6-34)

The corresponding integrands for equation (4-18) are

Ty(2) T,(1/2) = g2z’/b,
z z(z2+b z+by) (22+by2/by+1/by) (6-35)

2-161

e, (k)q

Fig. 35. The X1 Structure.

2-162

T,(2) T,(1/2) = (z-g;) (z-g1z9)/b,
z z(22+blz+b2) (zz+blz/b2+1/b2) .

The difference equations for the XI structure are enumerated below:

ei(k)q = ei(k) + nl(k)

e (k) = aoei(k)q + mz(k—l)q 636

6-3

eo(k)q = e, (k) + nz(k)

my (k) = g3ei(k)q + glml(k—l)q - gzmz(k—l)q

ml(k)q = my (k) + n3(k)

mz(k) = g4ei(k)q + glmz(k—l)q + gzml(k—l)q

mp (k) = my(k) + (k)

X2 Structure

The last programming form presented in this paper is the X2
structure of Fig. 36. The transfer function D(z) must be expressed
in the format of equation (6-32) in order to use this form.

This programming form has two internal quantizers whose transfer

functions to the filter output are

= + -
T,(2) = g3z + (8,8, - 8;83) (6-37)
2% + byz + b,
T,(z) = 8% ~ (gzg3 + 81g4)
22 + blz + b2 >
where
gl ==Re (p)
gz = Im (p)
(6-38)
33 ==Im (A)

g, = Re (&)

2-163

Fig. 36. The X2 Structure

2-164

The integrands for equation (4-18) are

T4(2)T4(1/2) = (g52+8)) (842+8,2%) /by

z z(zz+blz+b2) (zz+blz/b2 + 1/b2)

(6-39)

TA(Z)TA(llz) = (g4z+62) (g4z+6222)/b2

z z(z2+blz+b2)(zz+blz/b2+l/b2)
where
61 = 8,8, ~ 8183

8y =883 = 8184 -

The difference equations for the X2 structure are listed belqw:
e; (k) = eg (k) +1;(K)
eq(k) = age; (k) _ + gamy(k-1)q + gzm,(k-1)q
o 0=i‘tgq 371 472 (6-40)
eo(k)q = ey(k) + nz(k)
ml(k) = glml(k_l)q - gzmz(k'l)q
my(k) = 2 ei(k)q + glmz(k-l)q + gzml(k--l)q
mz(k)q = my(k) + n4(k)

This completes the X2 structure.

Summaryv of Programming Forms

This section has summarized the essential characteristics of
eleven programming forms for a second-order digital filter module.
All of the equations necessary to perform steady-state, statistical,
and error bound analyses have been determined. A pattern may be

observed in the formats of the relations for equation (4-18), the

2-165

residue evaluation equation for statistical analysis. All of the

integrands fall into the foliowing formats:

Fi(z) = Y3(Yozz+vlz+w2) (Yo+le+Y222)

z(zz+b z+by) (z2+blz/b2+1/b2)

1 (6-41)

or

F,(z) = va(z-vy) (1-v;2)

z(z-vo) (z=1/vy) .

Table 2 displays the respective equations for each programming form

using equation (6-41).

. Many other characteristics of each programming form should also be
investigated; for example, the coefficient sensitivity and the deadband

effects are also important for good digital filter operation.

2-166

Table 2. Integrands for (4-18).
Parameters
Programming Quantizer Format| vy, Y1 Yy Y3
Form
Q, =
Direct Qs Fl 0 by boy 1/by
Modified Qs Fy 0 by by 1/b,
Direct
Q Fy 0 0 1 1/by
Standard Q3 Fy 0 0 1 1/by
Q, Fq 0 1 by 1/b,y
Modified Q3 Fy 0 by b, 1/b,
Standard
Q, Fq 0 0 1 1/by
Qs Fq 0 0 1 1/by
Canonical Q3 Fy a, ay a, 1/by
Modified Qy F, | 0 al a2 1/b,
Canonical
Parallel Q3 Fy Py 0 —g%/pl
2
Y Fa | P2 0 ~8,/P1
2
Cascade Q, Fy a, a; a, l/glb2
: 2
Q, Fy P, q -83/p,

e 2.2
Modified Qg F 0 1 -4, g3g4/plp2
Cascade)

A Fp 1 Py 1, ~8,/p)
2
Q5 F2 PZ 0 —gG/PZ

2-167

Table 2. Integrands.for (4-18). (Cont'd)

. » [Parameters
Programming Quantizer [Format Yo | Y1 Yo Y3
Form
X1 Structure 2

Q3 Fl 0 0 1 g2/b2
X2 Structure Qq F 0 g, 81 1/by

VII. COMPUTER AIDED DESIGN

In the design of complex system, the digital computer serves as
an essential tool in synthesis and design verification. Computer
aided design (CAD) programs are effectively employed in the synthesis
of digital filters in three ways: transfer function synthesis,

coefficient quantization, and programming form selection.

Transfer Function Synthesis

The digital computer has been used extensively in the design of
digital filter transfer functions [30,71-74]. Nonrecursive designs
using linear programming has been implemented by Rabiner [73] while
Parks and McClellan [72] using polynomial interpolation techniques.,
Rabiner et al [30] also used é steepest descent technique to obtain
FIR filters with minimax error in selected bands.

Recursive digital filters have been synthesized using sampled
data transformations by Golden [71]. Robinson and Robinson [74]
have demonstrated a CAD program for taking z-transforms. Steiglitz
[75] has used nonlinear optimization techniques to obtain recursive

digital filter approximations to arbitrary frequency responses.

2-168

2-169

‘Coefficient Quantization

Avenhaus [48] has investigated the effects of coefficient optimi-
zation for reducing thé coefficient wordlength. A given filter is
designed and its coefficients are founded. Then an optimizing search is
undertaken to find other sets of coefficients which meet the design
criteria with a shorter wordlength.

Much work is left to be done in the proper quantization of digital
filter coefficients and CAD will surely play a major role in future

developments in this area.

Programming Form Selection

A CAD program, listed in [49], has been developed which analyzes
the signal amplitude quantization-errors in the eleven programming
forms presented in Chépter 6. The program, written in FORTRAN Iv,
is an aid to implemgnting digital filters for any application, the only
restriction is that the filtersbbe expressable as second order stages

as shown in equation (6-1).

General
The filter implementation program actually consists of eleven
parts, one for each programming form discussed in the previous section.

Each programming form is analyzed using steady-state, statistical,

2-170

and upper bound techniques. The system weighting constants KSs s K

j* “stye

and K, . are calculated using the equations of Table 1. K and K
ubj ssj stj
were computed by both equations for debugging purposes; Kubj was

determined using tlie second equation. A weighted average of these

constants was also used:

Kyaj = Alesj + AZKstj + ABKubj ’ (7-1)
where
)\l+)\2+>\3=1.
Therefore, a weighted average error can be calculated by
=} ’
le,] =) K _.h, . (7-2)

The weighting constants A; may be adjusted by the designer to emphasize
the steady state, statistical, or upper bound errors.

The filter implementation program may be used in two modes, one
for stored-program computers and one for special-purpose hardware; the
two modes are distinguished by the manner in which the quantizer step

lengths are chosen. In both the assumption is made that truncation

2-171

(or LSB-l) quantizers are used in the system. All errors must be
halved by the user if foundoff quantizers are present.
In the stored program mode the maximum error hj of the jth
quantizer is fixed by first simulating the ideal digital filter
response to a "worst case" step input, which is an A/D input word
of all "ones." During the transient response to this.step, the |
maximum value of the filter output and internal variables is recoxrded.
After the simulgtion has run a sufficient number of iterations for conver-
gence, sav 100, the maximum values are rounded up to the nearest
power of two. Since the computer wordlength is a fixed number L.,

the quantizer intervals are found by

] .
hj = llvarlmaxl rounded-up (7-3)

,2Lr
, ,
hy is always assumed equal one.
In the special—purpose computer mode the register lengths are

. - 1]

not fixed; therefore, a different method is used to find hj. The
philosophy of this mode is to balance the effect of each quantizer
in the system so that they all have relatively equal error contribu-

tions. This balancing is done by dividing equation (7-2) by K .

(with hj = 1):

8 1
[e,] =1+ Kyai \hi
_o.___‘."f i=2 at (7-4)

KWal KWal *

Each term in the summation is forced to be less than or equal one

(to insure that the A/D will introduce an error as large or larger

2-172

than the other quantizers) by choosing

M o< el (7-5)
Kyaj

]
A further restriction is that hj be a power of two; hence the ratio

Kwal/Kwaj is rounded down to the nearest power of two to find the

actual h; to be used:

h& = [Kwal/Kwaj] rounded down- (7;6)

Flow Charts

Fig. 37 demonstrates the flow of information in the main section
of the filter implementation program. The input data to be given to
the program is summarized below:

1) Transfer function coefficients in (6-1)
ag, 81» 3z, by, b2
2) Register lengths
A/D, D/A, and wordlength of the stored—program computer
or coefficient wordlength for the special-purpose computer.

3) Weighting coefficients in (7-1)
Al, >\29 A3

This is all the information needed to completely analyze the quantiza-
tion errors for all the programming forms.

The first major task in tﬁe program is to find the poles and
zeroes of the transfer function D(z) and to set three flags which omit
those programming forms which are unrealizable. The main program
then calls a subprogram for each realizable programming form. Each
called subprogram completely analyzes the quantization errors
characteristic to that particular form and prints their detailed
description. At the end of the program, final summaries of each

program mode are listed for easy cross-reference.

—\

READ INPUT DATA

l

CALCULATE POLES AND ZEROES

!

SET FLAGS TO SKIP

UNREALIZEABLE FORMS

!

PRINT PROGRAM

OPERATING VALUES

Y

CALCULATE FIRST

SIX FORMS

s FLAGL SET? >-LES—

2-173

EXIT

. PRINT FINAL SUMMARIES

CALCULATE XI AND

XII STRUCTURES

IS FLAG3 SET?
YES

NO

CALCULATE PARALLEL FORM

YES

IS FLAG2 SET?

CALCULATE CASCADE FORMS

—>

Fig. 37. Flow Chart of Main Progfam.

2-174

A general flow chart describing a subroutine for any given
programming form is shown in Fig. 38. The first task is to calculate
all of the parameters needed for the difference equations of the
specified programming form; next, these parameters are quantized.
The simulation difference equations are then calculated once for
the step response and once for each quantizer in the system. During
these simulations the system constants Kssjs Kstj, and Kypj are
calculated. Finally the steady-state, statistical, and upper bound

errors are calculated, as well as the weighted average error of

equation (7-2), for both modes of program'operation.

Source Listing

The filter implementation program consists of approximately 1800
source statements and is available in [49]. Also, a limited

number of printed listings are available from Auburn University.

Summarx

The filter implementation program has been developed using an
IBM 360/50 using FORTRAN IV and 0S360. In its final form the program
takes approximately 3.5 minutes to compile and 25 seconds to load and
execute. The execution time may be trimmed by limiting the simulation
iterations to a smaller number, say 10 to 20.

Now the CAD program will be used to analyze two digital filters,

one for each program operating mode.

2-175

< ENTER >

CALCULATE AND QUANTIZE

DIFFERENCE EQUATION PARAMETERS

y
INITIALIZE VARIABLES, SET STEP

INPUT, SET IJK=0

¢ :

CALCULATE SIMULATION EQUATIONS

FOR 100 ITERATIONS TO OBTAIN

MAXTMUM VALUES AND SUMS OF

ey leol, and eo2

CALCULATE h, FOR |g YES

3
STORED PROGRAM MODE

IS 1IJK=0?

4

NO IS IJK=4?

IJK=1JK+1 |=

SET QUANTIZER(IJK)
PRINT Kgg, Kge, Ky
FOR IMPULSE TEST

PRINT ERRORS FOR STORE

PROGRAM MODE

Y

?
CALCULATE hj AND PRINT ERRORS

FOR SPECIAL-PURPOSE COMPUTER MODE

Fig. 38. Flow Chart for Programming Form.

2-176

Stored Program Mode

Consider the second order digital filter

2
D(z) = z° + .75z + 0.125 . (7-7)

22 + .50z + .0525

Suppose that this filter is to be realized using a 16~bit minicomputer
uéing a 11-bit A/D and 13-bit D/A as input-output equipment. The com-
puter-aided design (CAD) program may be used in the étored-program mode
of operation to aid the designer in programming the minicomputer. Table
3 is the final summary of quantization errors attributed to the filter
above for its realizable programming forms.. The D(z) in (7-7) has real
poles and zeroes; therefore, the X1 and X2 structures may not be used.

Using the weighted average errors in Table 3, the CAD program rec-
ommends that the filter in (7—7)'be programmed by first the modified canon-
ical form; and second, the parallel form. Note that all the programming
forms give relatively good results; this is due to the fact that the
internal quantizers and output quantizers contribute only a minor part
of the total quantizing error. The A/D and D/A wordlengths chosen in

this example are responsible for these results.

2-177

€L6°T
7eS° T
T6%°1
8L%°T
708°1T
ZE9°1
T€6°T
9S°T
206°T

a8ra1aay
poaIy3Ton

656°1 %6
106°T zz6°
0s8° 1 868"
1€8° T 688"
€98°T £06°
860°2 986"
716 €26°
$86°T $%6°
8T 206
10119 10113

wNWEXey SWY

£18°T
08L°T
STL'T
YIL°T
SYL°T
018’1
8SL°T
0LL°T
0eL°T

1011y
aje3yg-Apeo3g

9pBISE) PITITPON
apeose)

T°oT11eaeg

restuousy POTITPOK
TEoTuoue)

PIEpuUBRIS PATITPOK
piepueis

19917Q POTITPON
I0911Qq

mwxog
SuruweaBoag

9PpOoN uwusaaoo uex8oxgd-paxols :Aiemwng Teurg "€ A14VL

2-178

Special-Purpose Computer Mode
Suppose that a special—puépoee computer is to be constructed to im-

plement the following z-domain tramnsfer function:

D(z) = 22 = 1.862z + .895 - (7-8)
22 - 2500

Again, if an 11-bit A/D is to be used, the CAD program gives the results
shown in Table 4. From the table, the weighted average error suggests

that the direct form is best; the modified canonical form, second.

Direct form. The program prints out an analysis of each programming
form which may be used for (7-8). See Table 5. The system error weight-

ing constants (K Kops and K,;) are summarized as well as the A's of

(7-1), the maximum quantizing error h' of each quantizer, and the form

factor. The form factor is interpreted as follows
FORM = I,J,
where

I = total number of bits for the register

J = number of bits to the right of the binary point.

A negative J indicates the least significant bit has a value greater

)= 2hi and h; = 4hi. The CAD program always

than one. From Table 5, h2

2-179

816°9
896°S
8¢€0°9
™i°L
£S0°9
£50°9
996° %

98vaaay
P23y31ap

[A AN
6T0°T1
610°2CT

600° 1T

9£9°6

9.9°6

Eve 8

10aag
UNWEXBR

8S1°Y
¥88°¢
900° %
69¢° Y
ELL°E
€LL°E
Lt'e

10aay
S

SG8°Y
000°¢
880°¢
9%0°9
1LY
TIL Y
LLe" e

10aayg
aje3s-4Apeaig

T91Te1Rd

TedtTuour) pIfITPOR
TeoFuouR)

paBpuBlS PITITPOR
paepue3s

I991TQ PATITPON
I0911Qq

‘wmxog
Surwmea8oag

apon 123ndumo) asodang-Teyoadg :4£aewmmg TeUTd 4 FT19VL

2-180

TABLE 5: The Direct Printout

STEADY-STATE ANALYSIS
KSS(1) = 0.044
KSS(2) = 1.000
KSS(3) = 0.333

STATISTICAL ANALYSIS
KST(1) = 1.426
RST(2) = 0.577
KST(3) = 0.149

ERROR BOUND ANALYSIS

KUB(1) = 5.009
KUB(2) = 1.000
KUB(3) = 0.333

SPECIAL-PURPOSE COMPUTER MODE

LAMBDA(1) = 0.333 H(1) = 1.0 FORM = 11,0
LAMBDA(2) = 0.333 H(2) = 2.0 FORM = 10,-1
LAMBDA(3) = 0.333 H(3) = 4.0 FORM = 9,-2

STEADY~-STATE ERROR = 3,377
PERCENT Q1 = 1.3
PERCENT Q2 = 59.2
PERCENT Q3 = 39.5

RMS ERROR = 3.177

PERCENT Ql = 44.9
PERCENT Q2 = 36.3
PERCENT Q3 = 18.8

MAXIMUM ERROR BOUND = 8.343
PERCENT Q1 = 60.0
PERCENT Q2 = 24.0
PERCENT Q3 = 16.0

WEIGHTED AVERAGE ERROR = 4,966
PERCENT Q1 = 43.5
PERCENT Q2 = 34.6
PERCENT Q3 = 21.9

2-181

1
gests that a 10-bit D/A may be used.

assumes h! = 1. Also, the form factor of Q,, the output quantizer, sug-

Modified canonical form. The CAD program output for the modified

canonical form is shown in Table 6. Note that h! = 2h. and hé = hi for

2 1

this programming form.

Closed-Loop Comparison

The second-order digital filter in (7-8) has been analyzed in [53]
for a closed-loop sampled-data control system. The block diagram for
‘the control loop is shown in Fig.v39. Statistical and upper bound tech-
niques were employed to design the compensator of the control loop for
both the direct and modified canonical forms; system simulations were
employed to verify the.results. Table 7 presents a comparison of the
open-loop fesults of this paper and the closed-loop results of [53].
Note that they agree very closely.

One observation should be made at this point. The register lengths
determined by the open-loop design procedures of this paper are in gen-
eral larger than those required in closed-loop applications. Stable
feedback systems generally tend to reduce the maximum valueé of the dig~
ital filter variables and thus the number pf bits needed to represent

these variables in the special-purpose computer.

2-182

TABLE 6: The Modified Canonical Printout

STEADY-STATE ANALYSIS
"KSS(1) = 0.044
KSS(2) = 1.000
KSS(3) = -0.956

STATISTICAL ANALYSIS
KST(1) = 1.426
KST(2) = 0.577
KST(3) = 1.303

ERROR BOUND ANALYSIS
KUB(1) = 5.009
KUB(2) = 1.000
KUB(3) = 4.009

SPECIAL-PURPOSE COMPUTER MODE
LAMBDA(1) = 0.333 H(1) = 1.0 FORM = 11,0
LAMBDA(2) = 0.333 H(2) = 2.0 FORM = 10,-1
LAMBDA(3) = 0.333 H(3) = 1.0 FORM = 12,0

STEADY-STATE ERROR = 3.000
PERCENT Q1 = 1.4
PERCENT Q2 = 66.7
PERCENT Q3 = 31.9

RMS ERROR = 3.884
| PERCENT Q1 = 36.7
PERCENT Q2 = 29.7
PERCENT Q3 = 33.6

MAXIMUM ERROR BOUND = 11.019
PERCENT Q1 = 45.5
PERCENT Q2 = 18.1
PERCENT Q3 = 36.4

~ WEIGHTED AVERAGE ERROR = 5.968
PERCENT Q1 = 36.1 |
PERCENT Q2 = 28.8
PERCENT Q3 = 35.1

2-183

*[€G6] door-To0a3uo)y ‘6¢ ‘814

66°¢ = 14

7201 _ _,
96z ¢
9201 %201 _ z = (®)a (0T X 26°C = Uy :
LT6 LU6T (T+24 + 22) (1-2)
T100°* = 1 (6°T- =4 . €
T+ 7d + gz 6-0T X LT°E = ()%
[¢]
o (2)°3)°
(2)}) — (z)a (2)%

(z)n

2-184

TABLE 7: Open-Loop Versus Closed-Loop

Programming Open-Loop Closed-Loop
Form Results Results [17]
1 -] 1] = ?
Direct hz 2h1 hz h1
' . ' ' - '
h3 4h1 h3 4h1
' = ' LR |
Modified h2 2h1 h2 h1
1 =Rt | - '
Canonical h3 h1 h3 .5h1

2-185

Conclusion

This section has presented a computer-aided design technique useful
in implementing digital filters expressed as z-domain transfer functions.
Two examples have been given to illustrate the stored-program and special-
purpose modes of operation of the CAD program. Also, the program,which
analyzes the filter's "open-loop" quantization errors, gives results closely
matching a "closed-loop" design. This CAD program should be used as a
tool for obtaining a "first guess' at the best way to program a digital
filtgr. If a closed-loop simulation is available for the system in which
the digital filter will be used, then the CAD program design may be ad-
justed to give better loop performance.

Although the program as presented has been designed for second-order
modules, it can be used as a subroutine in larger programs to match pole-
zero pairs for higher order realizatiomns, or to indicate the proper
cascade ordering of second-order modules. The CAD program may be a power-
ful tool to the digital filter (or controller)‘designer if its results

are properly interpreted.

VIII. APPLICATIONS OF DIGITAL FILTERING

Digital Filtering has found many diverse applications in recent

years.

This section lists several of them and points the interested

reader to the open literature for detailed descriptions.

The following list presents typical applications for digital filters:

l‘

8.

9.

Sampled-Data Control Systems

a. General [38, 77]

b. Pendulous Integrating Gyroscopic Accelerometer [78, 79].
c. Saturn V Thrust Vector Control [80, 81]

Speech Processing
a. General [82]

b. Vocoder [83]

c. Equalizers {[84]

Radar and Sonar Signal Processing
a. General [85, 86]

b. MII Filters [87, 88]

c. Tracking Filters [89, 90]

Spectral Analysis and Synthesis

a. Narrow Band Filters

b. FFT [91]

c. Frequency Synthesis [92]
Vibrations and Acoustic Testing [93]
Image Processing

a. General [24, 94, 95]

b. Image Enhancement [94, 95, 96]
c. Pattern Recognition [97]

Seismic Processing [7, 9]

Biomedical Processing [94, 95, 97, 98]

Synthesis of Speech and Music [99]

Many other applications of digital filtering are also important

with the number of new ones ever increasing.

2-186

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

[10]

[11]

2-187

REFERENCES

R. R. Read and C. S. Burrus, ''Use of the Geometry of Partial Sums
in Digital Filter Analysis," IEEETAU, Vol. AU-20, Aug. 72,
pp. 213-218.

T. G. Stockham, Jr., Chapter 7, Digital Processing of Signals
(B. Gold and C. M. Rader), New York: McGraw-Hill, 1969.

L. R. Rabiner and R. W. Schafer, "Recursive and Non-Recursive
Realization of Digital Filter Designed by Frequency Sampling
Techniques,ﬁ IEEETAU, Vol. AU-19, September 71, pp. 200-207.

T. S. Huang, '"Digital Signal Processing - Applications to Speech
and Image Processing," Course Notes, UCLA, July, 1972,

"General Principles of Digital Filtering and a Survey of Filters

in Current Range Use," IRIG Document 122-71, Data Reduction and
Computing Group, Range Commanders Council, U.S. Air Force, December,
1971, :

W. C. Kellogg, "Time Domain Design of Nonrecursive Least Mean-
Square Digital Filters,'" IEEETAU, Vol. AU-20, June, 1972,
pp. 155-158.

E. A. Robinson and S. Treitel, "Principles of Digital Wiener
Filtering," Geophysical Prospecting, Vol. 15, September, 1967,

pp. 311-333.

J. D. Markel, "Digital Inverse Filtering - A.New Tool for Formant
Trajectory Estimation," IEEETAU, Vol. AU-20, June, 1972,
pp. 129-137.

K. L. Peacock and S. Treitel, "Predictive Deconvolution: Theory
and Practice,'" Geophysics, Vol. 34, April, 1969, pp. 155-169.

H. B. Voelcker and E.VE. Hartquist, ''Digital Filtering via Block
Recursion,'" IEEETAU, Vol. AU-18, June, 1970, pp. 169-176.

H. O. Helms, "Fast Fourier Transform Method of Computing Difference
Equations and Simulating Filters,'" IEEETAU, Vol. AU-15, June,
1967, pp. 85-90.

2-188

[12] D. Chanoux, "Synthesis of Recursive Digital Filters Using the FFT,"
IEEETAU, Vol. AU-18, June, 1970, pp. 211-212.

[13] R. Reed and J. Meek, "Digital Filters with Poles Via the FFT,"
IEEETAU, Vol. AU-19, December, 1971, pp. 322-323.

[14] J. P. Thiran, "Recursive Digital Filters with Maximally Flat
Group Delay," IEEE Trans. on Circ. Theory, Vol. CT-18, November,

{15] T. H. Crystal and L. Ehrman, "The Design and Application of Digital
Filters with Complex Coefficients,' IEEETAU, Vol. AU-16,
September, 1968, pp. 315-320. o

[16] E. P. F. Kan and J. K. Aggarwal, "Randomly Sampled Digital Filters,"

[17] E. P. F. Kan and J. K. Aggarwal, "Multirate Digital Filtering,"
IEEETAU, Vol. AU-20, August, 1972, pp. 223-224 (Correspondence).

[18] T. S. Huang, '"Stability of Two-Dimensaional Recursive Filters,"
IEEETAU, Vol. AU-20, June, 1972, pp. 158-163.

[19] T. S. Huang, "Two-Dimensional Windows,'" IEEETAU, AU-20, March,
1972, pp. 88-89.

[20] J. G. Proakis, "Adaptive Digital Filters for Equalization of
Telephone Channels,' IEEETAU, Vol. AU-18, June, 1970, pp. 195-
200.

[21] A. R. M. Noton, Introduction to Variational Methods in Control
Engineering, New York, Pergamon Press, 1965.

[22] G. Williamson, "Optimal Controllers for Homing Missiles," RE-TR-
68-15, U. S. Army Missile Command, Redstone Arsenal, AL,
September, 1968.

[23] R. E. Kalman and R. S. Bucy, 'New Results in Linear Filtering and
Prediction Theory," J. Basic Eng., March, 1961, pp. 95-108.

[24] A. B. Oppenheim, R. W. Schafer, and T. G. Stockham, Jr., "Nonlinear
Filtering of Multiplied and Convolved Signals," IEEETAU, Vol. AU-16,
September, 1968, pp. 437-566.

[25] J. R. Heath and C. C. Carroll, "Special-Purpose Computer Organization
for Double-Precision Realization of Digital Filters," IEEETC,
Vol. C-19, December, 1970, pp. 1146-1152.

2-189 -

[26] C. C. Carroll and J. W. Jones, "A Special-Purpose Computer
Realization of a Time-Shared Digital Filter," Technical
Report Number 10, NAS8-20163, Engineering Experiment Station,
.Auburn, Alabama, August, 1968.

[27] A. V. Oppenheim, "Realization of Digital Filters Using Block-
Floating-Point Arithmetic,' IEEETAU, Vol. AU-~18, June, 1970,
pp. 130-136.

[28] A. W. Crooke and J. W. Craig, '"Digital Filters for Sample-Rate
Reduction," IEEETAU, Vol. AU-20, October, 1972, pp. 308-315.

[29] A. A. G. Requicha and H. B. Voelcker, "Design of Nonrecursive
Filters by Specification of Frequency-Domain Zeroes," IEEETAU,
Vol. AU-18, December, 1970, pp. 464-470.

[30] L. R. Rabiner, B. Gold, and C. A. McGonegal, "An Approach to the
Approximation Problem for Nonrecursive Digital Filters," IEEETAU,
Vol. AU-18, June, 1970, pp. 83-106.

[31] B. Gold and K. L. Jordan, Jr., "A Direct Search Procedure for
Designing Finite Duration Impulse Response Filters,;'" IEEETAU,
Vol. AU-17, March, 1969, pp. 33-36.

[32] T. J. McCreary, "On Frequency Sampling Filters,'" IEEETAU,
Vol. AU-20, August, 1972, pp. 222-223.

[33] H. D. Helms, "Nonrecursive Digital Filters: Design Methods for
Achieving Specifications on Frequency Response,' IEEETAU, Vol.
AU-16, September, 1968, pp. 336-342,

[34] H. D. Helms, '"Digital Filters with Equiripple or Mlnlmax Response,
IEEETAU, Vol. AU-19, March, 1971, pp. 87-93.

[35] R. W. Hankins, "Design Procedure for Equiripple Nonrecursive Digital
Filters," Technical Report 485, MIT Research Laboratory of Electronics,
Cambridge, MA, May 12, 1972.

[36] R. K. Ontes, "An Elementary Design Procedure forzﬁigital Filters,"
: TEEETAU, Vol. AU-16, September, 1968, pp. 330-335.

[37] R. M. Golden, "Digital Filter Synthesis by Sampled-Data Transforma-
tion," IEEETAU, Vol. AU-16, September, 1968, pp. 321-329.

[38] B. C. Kuo, Analysis and Synthesis of Sampled-Data Control Systems.
Englewood Cliffs, NJ, Prentice-Hall, Inc., 1963.

[39]

(40]

(41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

(51]

[52]

2-190

R. Fletcher, Optimization. New York: Academic Press, 1969.

T. C. Hsia, "On Synthesis of Optimal Digital Filters," Proc.
First Asilomar Conference on Circuits and Systems, November,

1967.

D. B. Kimsey and H. T. Nagle, '"Digital Filter Implementation
by Minicomputer," Proc. IEEE Region 3 Convention, April 10-
12, 1972, pp. C3~1, C3-4.

L. R. Rabiner and K. Steiglitz, "The Design of Wide-band Recursive
and Non-Recursive Digital Differentiators,' IEEETAU, Vol. AU-18,
June, 1970, pp. 204-209.

D. W. Tufts and J. T. Francis, '"Designing Digital Low-Pass
Filters - Comparison of Some Methods and Criteria,' IEEETAU,
Vol. AU-18, December, 1970, pp. 487-494.

S. C. D. Roy, "On Maximally Flat Sharp Cutoff Low-Pass Filters,"

IEEETAU, Vol. AU-19, March, 1971, pp. 58-63.

M. C. Agarwal and A. S. Sedra, 'On Designing Sharp Cutoff Low-
Pass Filters," IEEETAU, Vol. AU-20, June, 1972, pp. 138-141.

A. V. Oppenheim, "Effects of Finite Register Length in Digital
Filtering and the Fast Fourier Transform," Proceedings of the

IEEE, August, 1972, pp. 957-976.

R. K. Ontes and L. P. McNamee, "Instability Thresholds in Digital
Filters Due to Coefficient Rounding,' IEEETAU, Vol. AU-18,
December, 1970, pp. 456-463.

E. Avenhaus, '"On the Design of Digital Filters with Coefficients
of Limited Wordlength,'" IEEETAU, August, 1972, pp. 206-212.

H. T. Nagle, Jr., and M. M. Edgeworth, "Computer Aided Design of
Digital Filters," TR#14, NAS8-20163, George C. Marshall Space
Flight Center, Huntsville, AL, September, 1971."

J. B. Slaughter, "Quantization Errors in Digital Control Systems,"

IEEETAC, Vol. AC-19, January, 1964, pp. 70-74.

B. Widrow, "Statistical Analysis of Amplitude Quantized Sampled-
Data Systems,' AIEE Trans. on Appl. and Ind., No. 52, January,
1961.

H. T. Nagle, Jr., "Comments on 'A Least Upper Bound on Quantization
Error'," IEEETAC, Vol. AC-14, August, 1969, pp. 433-434.

(531

(54]

[55]

[561]

[57]

58]

(59]

[60]

[61]

[62]

[63]

[64]

2-191

H. T. Nagle, Jr., and C. C. Carroll, '"Memory Sizing for Digital
Filters," Proc. of the IFIP Congress '71, Ljubljana, Yugoslavia,
August 23-25, 1971, pp. TA-4-129, 133.

E. P. F. Kan and J. K. Aggarwal, "Minimum - Deadband Design of
Digital Filters," IEEETAU, Vol. AU-19, December, 1971, pp. 292-
296. . '

S. R. Parker and S. F. Hess, '"Limit-Cycle Oscillations in Digital
Filters," IEEETCT, Vol. CT-18, November, 1971, pp. 687-697.

P. M. Ebert, J. E. Mazo, and M. C. Taylor, "Overflow Oscillations
in Digital Filters," BSTJ, Vol. 48, 1969, pp. 2999-3020.

H. T. Nagle, Jr., and C. C. Carroll, "Organizing a Special-Purpose
Computer to Realize Digital Filters for Sampled-Data Systems,"
IEEETAU, Vol. AU-16, September, 1968, pp. 398-412.

I. W. Sandberg, "Floating-pointARoundoff Accumulation in Digital
Filter Realization," BSTJ, Vol. 46, October, 1967, pp. 1774-1791

B. Liu and T. Kaneko, "Error Analysis of DigitallFiIters Realized
with Floating-Point Arithmetic," Proc. IEEE, Vol. 57, October,
1969, pp. 1735-1747.

B. Liu, "Effect of Finite Wordlength on the Accuracy of Digital
Filters - A Review," IEEETCT, Vol. CT-18, November, 1971,
pp. 670-677.

E. P. F. Kan and J. K. Aggarwal, "Error Analysis of Digital Filter
Employing Floating-Point Arithmetic," IEEETCT, Vol. CcT-18,

" November, 1971, pp. 678-686.

J. F. Kaizer, "Some Practical Considerations in the Realization .
of Linear Digital Filters," Proc. 3rd Annual Allerton Conf. on

Circuit and System Theory, 1965, pp. 621-633.

J. W. Henderson, Jr., "A Comparison of Different Realizations of
a Second Order Digital Filter with Regard to Quantization Errors,"
Masters Thesis, Auburn University, Auburn, AL, June 9, 1970.

R. E. Crochiere, "Digital Ladder Structures and Coefficient Sensi-
tivity," IEEETAU, Vol. AU-20, October, 1972, pp. 240-246.

2-192

[65] A. E. Vereshkin, et.al., "Two New Structures for the Implementation
of a Discrete Transfer Function with Complex Poles," Automation and

Remote Control, September, 1968, pp. 1416-22.

[66] P. M. DeRusso, R. J. Roy and C. M. Close, State Variables for
Engineers, New York, N. Y., John Wiley and Sons, Inc., 1965.

[67] S. K. Mitra and R. J. Sherwood, 'Canonic Realizations of Digital
Filters Using the Continued Fraction Expansion,' IEEETAU, Vol.
AU-20, August, 1972, PPp. 185-194.

[68] A. Antonion, "Realization of Digital Filters,'" IEEETAU, Vol. AU-20,
March, 1972, pp. 95-97.

[69] C. S. Burrus, '""Block Realization of Digital Filters," IEEETAU,
Vol. AU-20, October, 1972, pp. 230-235.

[70] L. B. Jackson, "Roundoff Noise Analysis for Fixed-Point Digital
Filters Realized in Cascade or Parallel Form,'" IEEETAU, Vol. AU-18,
June, 1970, pp. 107-122.

[71] R. M. Golden, "A Computer Program for the Design of Continuous and
Digital Transfer Functions," Autonetics Publication TM68-572-21-8,
August, 1968.

[72] T. W. Parks and J. H. McClellan, "A Program for the Design of
Linear Phase Finite Impulse Response Digital Filters,'" IEEETAU,
Vol. AU-20, August, 1972, pp. 195-199.

[73] L. R. Rabiner, '"Linear Program Design of Finite Impulse Response
(FIR) Digital Filters,'" IEEETAU, Vol. AU-20, October, 1972,
pp. 280-288.

[74] P. N. Robinson and G. S. Robinson, "A Computer Method for Obtaining
z-Transforms," IEEETAU, Vol. AU-20, March, 1972, pp. 98-99.

[75] K. Steiglitz, "Computer-Aided Design of Recursive Digital Filters,"
IEEETAU, Vol. AU-18, June, 1970, pp. 123-129.

[76] A. Fellweis, "Some Principles of Designing Digital Filters
Imitating Classical Filter Structures,'" IEEETCT, Vol. CT-18,
March, 1971, pp. 314-316.

[77] J. A. Cadyow and H. R. Martens, Discrete-Time and Computer Control
Systems. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1970.

(78]

[79]

{80}

[81]

[82]

[83]

[84]

[(85]

[86]

[87]

(88]

(89]

[90]

2-193

C. C. Carroll, et.al., "The Hybrid Realization of a Digital Controller
for the PIGA Control Loop,'" TR#6, NAS8-20163, George C. Marshall
Space Flight Center, Huntsville, AL, September, 1967.

R. White, H. T. Nagle, and C. C. Carroll, '"Organization of a
High-Speed Stored-Program Special-Purpose Computer for the
Realization of Digital Filters," TR#13, NAS8-20163, George C.
Marshall Space Flight Center, NASA, Huntsville, AL, May, 1971

C. L. Phillips, et.al., "Digital Compensation of the Thrust Vector
Control System,” TR#8, NAS8-11274, George C. Marshall Space Flight
Center, NASA, Huntsville, AL, May, 1967.

H. T. Nagle, Jr., and C. C. Carroll, "A Special-Purpose Reallza—
tion of a Third-Order Digital Filter for the PIGA Control Loop,"
TR#9, NAS8-20163, George C. Marshall Space Flight Center, NASA,
Huntsville, AL, May, 1968.

R. W. Schafer, "A Survey of Digital Speech Processing Technlques,

IEEETAU, Vol. AU-20, March, 1972, pp. 28-35.

L. K. Schweizer, "Problems in Realizing a Digital Vocoder and
Novel Solutions," IEEETAU, Vol. AU-19, March, 1971, pp. 94-96.

F. Eggimann, "Computer Simulation of an Automatic Adaptive
Equalizer for Real Telephone Channels and Free Data Format,"

IEEETAU, Vol. AU-18, December, 1970, pp..434-438.

K. V. Schlachta, "Digital Radar Recording and Analysis,' IEEETAU,

Vol. AU-18, December, 1970, pp. 399-403.

J. D. Echard and R. R. Boorstyn, "Digitéi Filtering for Radar
Signal Processing Applications," IEEETAU, Vol. AU-20, March, 1972,
pp. 42-52. v

A. I. Zverev, '"Digital MIT Radar Fllters," IEEETAU, Vol. AU-16,
September, 1968, pp. 422-432.

R. Roecker, "The Application of Digital Filters for Moving Target
Indication,”" IEEETAU, Vol. AU-19, March, 1971, pp. 72-77.

A. J. Monroe, Digital Processes for Sampled-Data Systems. New
York: John Wiley and wons, Inc., 1962

N. Morrison, Introduction to Sequential Smoothing and Prediction.
New York: McGraw-Hill, 1969.

[91]

[92]

[93]

[94]

[951]

[96]

[97]

[98]

[99]

2-194

S. Bertram, "Frequency Analysis Using the Discrete Fourier
Transform,'" IEEETAU, Vol. AU-18, December, 1970, pp. 495-500.

J. Tierney, C. M. Rader, and B. Gold, "A Digital Frequency
Synthesizer," IEEETAU, Vol. AU-19, March, 1971, pp. 48-57.

A. G. Ratz, "Statistical Effects in Automatic Random Equalizer,"
IEEETIM, Vol. IM-16, December, 1967.

Special Issue on Digital Picture Processing, Proceedings of the
IEEE, Vol. 60, No. 7, July, 1972,

Special Issue on Two-Dimensional Digital Signal Processing,
IEEETC, Vol. C-21, Number 7, July, 1972.

H. C. Andrews, A. G. Tescher, and R. P. Kreiger, "Image Processing
by Digital Computer,' IEEE Spectrum, Vol. 9, July, 1972, pp. 20-
32.

Special Issue on Digital Pattern Recognition, Proceedings of the
IEEE, Vol. 60, No. 10, October, 1972.

G. Dumermuth, et.al., "Numerical Analysis of Electroencephalographic
Data," IEEETAU, Vol. AU-18, December, 1970, pp. 404-411.

L. L. Beranek, '"Digital Synthesis of Speech and Music," IEEETAU,
Vol. AU-18, December, 1970, pp. 426-433.

PART THREE

MECHANIZATION

OF DIGITAL

FILTERS

II.

ITI.

IV.

PART THREE: MECHANIZATION OF DIGITAL FILTERS

TABLE OF CONTENTS

Introduction e e e e e e e e e i e e e

General Purpose Computer Implementations .

A. Simulation « + « ¢ ¢« ¢ ¢ 0 e e e e v o
B. Real Time Programming. . « « « + '+ .
Minicomputer Implementations . . . + &+ .
A. Hardware Requirements. . . -.; . .

- B. Operating System . + « ¢+ « « ¢« + o+
C. Assembly Programs. . . « » + -« C e

D. Experimental Results =

Special Purpose Computers. o

A. Implementation by Sample and Hold Devices with

Analog Networks. . . .+ .
B. Hybrid Implementation. . . - + -

C. Digital Implementation - . e
1. Input/Output Components. « « «+ -
2. . Arithmetic Unit. « « « o « ¢ «
3. Memory Design. « « « « « + ¢ o
4. Controller Design. - « « « ¢ «

D. Implementation by Microprogrammable SP Computer

1. Input/Output Unit« « « « ¢ ¢ « « -
2. Arithmetic Unit s - « =+ ¢ o o o o
3. Memory + ¢+ ¢ ¢ o s 4 4+ e e e oo
4, Control Unit « ¢ ¢ o o o o o

3-1

3-4

3-9

. 3-11
. 3-11
. 3-16
. 3-19

. 3-22

. 3-25

. 3-70
. 3-76
. 3-77
. 3-82
. 3-93

E. Time-Sharing of a Digital Filter Implementation.
F. Range Switching Digital Filter Implementation.

G. LSI Digital Filter Implementation.

H. Commercial Digital Filters .

V. FFT Hardware .

A. Commercial Equipment .

B. MIT Fast Digital Processor .

REFERENCES

3-iii

3-98
3-105
3-112

3-113

3-117
3-117

3-118

3-125

I. INTRODUCTION

In recent years a trend has been developing to replace analog sys-
tems with digital systems. This rate of replacement has been directly
related to the technological advances in the manufacturing of digital
logic building blocks. With the advent of large-scale-integration, a
particular class of digital networks, called digital filters, has be-
come economically practical in such areas as stabilization of control
systems, spectrum analysis, voice and speech analysis, radar, medical
electronics and virtually any other analog filter function [1,2].

Digital filtering has been defined in PARTS ONE and TWO as a
computational process consisting of digital multiplications, additions
and delays whereby one sequence of numbers is transformed into another
sequence. This transformation may be specified by a transfer function
in the z-domain, D(z), or by a set of linear difference equations
with constant coefficients. Assuming knowledge of these coefficients,
digital filter realization procedures [1,3,4,5] consist of the design
of a digital system to solve these difference equations. The difference
equations may be solved with a software program and a general purpose
computer or with the use of a special-purpose (SP) computer [6,7,8,9,

10,11,12], a technique which has become increasingly popular.

3-2

- In the SP computer realizatibns, a particular digital filter pro-
gramming form is selected and the computer is designed accordingly
[13,14,15,16,17]. Particular attention must Be given to assure that
the hardware organization meets the system specifications for coefficient
.quantization, signal amplitude quantization, and quantizatiqn noise
levels introduced into the system by the digital filter implementation.
At the present time no systematic design procedure has been developed
to accomplish these goals. Typically one designer specifies the digital
filter coefficients and anothef specifies a hardware implementation.

The state-of-the-art in digital filter implementation is represented
in [1,3,7,8,9,10,12,18,19,20,21]. Pefhaps the most interesting are the
IC model in [1] and the programmable design of [12]. The IC model is
ayailable from Autonetics Division of North American Rockwell. A
digital filter implemented with this technology is small and can
realize third-order filters at sampling rates‘of up. to 5kHz. However,
poles must be real and the parallel progrémming'form is the only one
available. The commercial units also have restricted programming
forms, or implementation is done by frequency transformations which
limit their use to applications in which minimum time aeiay and high
speed sampling are not specified. It has been shown in [14] that some
of the programming forms have different characterigtics, and it is
desirable in many cases to be able to select the programming form.

The need for a sglectable programming form alpng with the desirable

features of LSI implementation offer a challenge to the system designer.

3-3

Add fhe necessify for real-time fault diagnosis and standardized CAD

brocedures to the list and the system design goals are complete.
‘Now that the theory of digital filtering has been ﬁresented in

PART TWO, we will examine four mechanization techniques for digital

filters. The four techniques are 1) general—purpose computers,

2) mini-computefs, 3) special-purpose computers, and 4) FFT hardware.

A discussion of all techniuqes will be presented starting with

mechanization (implementation) by general-purpose (GP) computers.

CL"I

II. GENERAL PURPOSE COMPUTER IMPLEMENTATIONS

Of the four implementation techniques, the GP computer is the
least attractive, with the main reason being that most GP computers
possess excessive computing capabilities to be used only for differ-
ence equation calculations. If this were done, there would be large
portions of the computer hardware that would never be used thereby
making this type implementation overly expensive.

vGP computers do have a useful application in digital filter
implementation in that they may be used to simulate other implementation
designs (an example being by special-purpose computers) or for real-
time programming of a GP computer to implement a digital filter as well
as other computational chores. Let us now look at these two aspects

of using a GP computer in the design of a digital filter system.

Simulation
The most common implementation of a digital filter is by special-
purpose computer. When designing a special-purpose computer for the

implementation of the filter in a particular programming form, one of

the first steps that must be done is deciding on word length require-
ments for the input word, output word and internal variable (m(kT - T),
m(kT - 2T), etc. of the difference eqs.) wordlengths»and possibly
arithmetic schemes. This can be accomplished by techniques such as
the CAD program presented earlier. Once a design is recommended, it
is good engineering practice to simulate the system on a GP computer
to verify all the design-parameters. With most higher level languages,
‘logical programming may be done such that every aspect of the design
may be simulated. If this approach is taken the system designer may
"change something' and observe its effects; this technique may be
used to "optimize" tﬁe final system design. |

As an example of a digital filter implementation simulation, the
progfam below was written in FORTRAN and run on an IBM 360 digital
computer to simulate the "range-switching" filter described in [8]
employed in a nulling type control loop. The program was written so
that the "range-switching" effects on the oﬁtput of the loop could be
observed and the effect ﬁhe wordlengths had on the outﬁut response for
a particular input, which in this case is a sine wave of specified

amplitude and frequency.

3-6

FORTRAN SOURCE PROGRAM FOR SIMULATION OF PIGA LOOP
WITH A NOISE INPUT

SOURCE DECK _
C TIME DOMAIN SIMULATION OF THE COMPENSATED SYSTEM
DIMENSION X1(2),X2(2),X3(2), D(2)

669

COMMON/COM2/RM(1001) , ITER, TES
COMMON/COM1/XP(3,2),BQ(1),C(2)

1

2

10

FORMAT (1H ,13,2X,1P9E13.4)
CALL INPUT

FORMAT (1H1)

N=1

H=1.0E+05

WN=184.0

T=0.001

GP=56.2

GT=321000.0

CDA IS THE TOTAL LOOP GAIN
GDA=0.083

W1=SIN(WN*T) /WN

W2=C0S (WN*T)

W3=(1.0-W2) /WN**%2
W4=(T-W1) /H

W5=(1.0-W2)/H

W6=WN*SIN (WN*T)

W7=W6/H
GDIG=GAD/GT/GP/ (T-W1) *H
WRITE(6,10) GDIG

FORMAT (1HO, 7HKDIG = ,1PEll.4)
TEST=+2000.0%980.0/4.0

DO 669 NAGL=1,2

XP (NAGL,1)=0.0

BDC=0.0
BQ(1)=0.
X1(1)=0.
X2 (1)=0.
X3(1)=0.
D(1)=0.0
C(1)=0.0
COFS=0.0
DO 5 1=1,ITER

R=TES#*980. *RM(I)

WRITE(6,1) I,BDC,BQ(N),X1(N),XP(1,1),D(N),R,COFS,C(1)
BEGIN ANALOG PORTION SIMULATION

X1 (N+1)=X1 (N)+WL*X2 (N)+W3*X3 (N)+W4* (R-GR*D (N))

X2 (N+1)=W2*X2 (N)+W1*X39N)+W5%* (R-GR*D(N))

X3 (N+1)=W2*X3 (N) +W6 *X2 (N)+W7* (R-ST*D(N))

BDC=GP*X1 (N+1)

0
0
0
0

[N @]

w B

3-7

END ANALOG PORTION SIMULATION
BEGIN DIGITAL UNIT SIMULATION
UI=BDC

CALL DIGCOM (UI,YP)
D(N+1)=GDIG*YP

END DIGITAL UNIT SIMULATION
COFS=GT*D(N+1)

X1 (N)=X1(N+1)

X2 (N)=X2 (N+1)

X3 (N)=X3(N+1)

D(N)=D(N+1)

STOP

END

SUBROUTINE DIGCOM(U1l,YP)
COMMON/COM1/SP(3,2) ,BQ(1),C(2)
A0=1.0

Al=-119./64.

A2=57. /64.

B1=0.0

B2=0.0

FX=256.

UI=UI/3.0*FX

EX=1.0

CALL ROUND (UI,EX,FX)
UP=UI

BQ(1)=UP*3.0/FX
UI=UI*3.0/FX

IF(ABS(UP)-16.0) 2,3,3

€(2)=0.0

GO .TO 4

C(2)=1.0

UP=UP/16.

1UP=UP -

UP=1UP

FX=16.

IF(C(2)-C(1)) 4,6,7
XP(1,1)=16.*XP(1,1)
XP(2,1)=16.%*XP(2,1)
AX=4.0

BX=63.75

CALL ROUND(XP(1,1),AX,BX)
CALL ROUND(XP(2,1),AX,BX)
GO TO 6
XP(1,1)=XP(1,1)/16.0
XP(2,1)=SP(2,1)/16.
AX=4.0

BX=63.75

CALL ROUND (XP(1,1),AX,BX)
CALL ROUND (XP(2,1),AX,BX)

SP(1,2)=-B1*XP(1,1)-B2*XP(2,1)+UP

XP(2,2)=SP(1,1)

19

AX=4.0

BX=63.75

CALL ROUND(XP(1,2),AX,BX)

YP=(A1-AO*B1) *XP (1,1)+(A2-A0*B2) *XP(2,1)
+A0*UP

CX=64.

DX=255./64.

CALL ROUND(YP,CX,DX)

DO 1 I=1,2

XP(I,1)=XP(1,2)

c(1)=C(2)

YP=YP/FX*3.0

RETURN

END

SUBROUTINE INPUT

RANDOM INPUT
COMMON/COM2 /RM(1001) ,ITER,TES
TES=200.

ITER=301

NRANB=6

CALL RANBIT (NRANB)

CALL RCON1(35187269)

RMAX= (2. **NRANB-1.)/2.

D019 I=1,ITER

RM(K)=IRAN(5)

RM(I) = (RM(I)-RMAX)/RMAX
RETURN

END

SUBROUTINE ROUND (A,AN,BN)
X=ABS (A)

S=A/X

IX=X*AN"

XQ=IX

XQ=XA/AN
IF(XQ-BN) 1,2,2
A=S*XQ

RETURN

A=S*BN

RETURN

END

Real Time Programming

A digital fiiter implemented on a general-purpose computer,
whether large or small, is said to be realized by real-time pro-
gramming. Thg machine language version (translated from some higher
level language) bf the difference equations must execute quickly |
enough to meet the.sampling rates imposed by the system specificationsf
In some applications the generai—purpose cqmputer will handle other
calcuiations as well and wili be "time-~shared" to perform both duties.
Other times.a Smallbproéess control computer can be dedicated solely
to the digital filter calculatioﬁs. An example system is sﬁown in
Fig.'z.i.

Generally speaking, future trends will be to design special-
purpose computers to shoulder the digital signal processing tasks, and
relieve the_genéral-purpose computer for more complicated tasks which
exploit its entire computational power as embodied by its versatile

instruction set.

31-10

GP So(t)
e A/D % Computer ;l D/A P Gz(s) -

H(s)

Fig., 2.1. A GP computer being used as a digital
filter in a discrete control loop.

III. MINICOMPUTER IMPLEMENTATIONS

| A minicomputér‘implgnentation of a digital filter as described
in [22] will be discussed. Only one reference is used as a background
since it is the only one that has been seen in the literature of digital
.filtering. It will be sufficient since any other minicomputer imple-

mentation would follow the guidelines presented.

Hardware Requirements.

The hardware used for the minicomputer implementation is shown in
Fig. 3.1. It consists of a Honeywell H316 minicomputer with two 4096-
word memory modules, a iO-bit analog-to-digital (A/D) converter, a 12-bit
digital-to-analog (D/A) converter, a crystal-controlled real-time clock
and the ASR-33 teletypewriter.

H316 minicomputer. The H316 is a GP minicomputer with a 16-bit

wordlength. Arithmetic is performed in two registers, A and B, and
it is a one-address machine with the A register serving as the accumulator
which will be described.in detail later. The memory is divided into
sectoré or pages of 512 words each, with the computer having the
capability to reference any ofvthe_512 words within a certain sector.
Single-level indexing and/or multiple~level indirect addressing can be
used to address words outside the current sector or the base sector.

With respect to the arithmetic instructions of the computers
instruction set, there are two modes of operation: single precision

and double precision. Each mode of operation may be entered by the use

3-11

3-12

4K 4K
Memory Memory
H316
Minicomputer
Real-Tim
A/D D/A ASR-33
/ / Clock

Fig. 3.1. Hardware used in minicomputer implementation.

3-13

of one instruction, "SGL" for single-precision arithmetic operations
and "DBL" for double precision arithmetic operations. When operafing
in the single-precision mode, the A register is used solely as the
accumulator. It is 16-bits long with the left-most bit being the
sign bit and the 15-bits to the right being the most-significant
through the least significant of the magnitude bits which are in a
twdfs coﬁplemeﬁt code. When operating in the double precision mode,
the A and B registers are used as the accumulator with the sign bit
being in the left-most bit position of the A register. The rest of
the A register contains the 15 most significant bits of the double
precision word with the 15 least significant bits being contained in
the 15 right most bit positions of the 16 bit B register. The left
most bit position of the B register does not take part in arithemtic
operations.

When performing.the "add" instruction which will have to be done
many times in difference equatibns calculations, the contents of the
addressed memory‘word are added to the contents of A leaving the sum
in A for single-precision addition. If done in double-precision the
contents of the addressed memory word (two memory locations for double
precision) are added to the contents of the A and B registers and the
sum left in them.

The same procedure occurs for multiply for the single or double
precision mode. The addressed word in memory is multiplied by the word
stored in the A or A and B registers and the product left in the A or

A and B registers.

3-14

Fixed point arithemtic is used for all difference equation calcu-
lations. Since an imaginary binary point is assumed, after a multipli-
cation instruction is executed, the computer shifts the product as
required to align the binary point.

Input to the minicomputer is accomplished through 16 input bus
lines into the A register. Several peripheral devices may be connected
to this bus as inputs to the computer. In the case of the.minicomputer
implementation of a digital filter this bus inputs information from the
A/D, ASR-33, and the real-time clock.

Output is accomplished through 16 output bus lines which are tied
directly to the A register and always reflect its contents. For the
digital filter implementation, the output device is the D/A or the ASR-33.

The different input devices are checked by the computer by placing
a code unique to each device on the address bus.

Most peripheral devices are slower than the computer, thereby
making the computer spend much of its time waiting for a peripheral
device to perform its function. It is for this reason that it is
practical to let the computer process other information while a particu-
lar peripheral is performing its I/O function. Then when the peripheral
is finished, it can inform the computer and the computer can give it
another command.

The method of informing the computer of the completion of a task

is called an interrupt. When a peripheral interrupts the H316, it

3-15

finishes executing the instruction.présently being performed and then
performs a subroutine jumﬁ indirectiy through a dedicated memory
location. In.sﬁort, the dedicated memory location contains the address
of a subroutine to which the computer jumps wﬁen an interrupt occurs.
Within this subroutine the computer may poll the peripheréls to find
out which one interrupted.

An A/D converter is used as the input interface element to the
comﬁuter. The A/D which was interfaced to the H316 is a bipolar con-
verter having a range of -10v to +iOv.» It has a 10-bit plus sign-bit
output which is input into the most significant 10-bits of the A
register.

‘Thé D/A converter accepts and transforms the binary output of the
computé: into an analog voltage. A hold registér is employed so that
the output voltage will remain constant until the next output occurs.
The D/A used in the minicomputer implementation was built from Honeywell
u-Pac DTL logic. The converter is built from three cascaded.Honeywell
CE-071 four-bit converters which consist of a resistive ladder plus
switching network.

To provide for a sampling rate othgr than that determined by the
computers execution time, a real-time clock was employed. It initiates
each cycle consisting of input, calculation, and output and is built
as a peripheral which furnishes periodic (sample rate) interrupts to
the computer. When an interrupt occufs, the computer goes through one

cycle and then waits for the next interrupt before it goes through the

3-16

cycle again. This allows the operator of the minicomputer to obtain
any desired sample rate.

Operating System

It is the purpose of the minicomputer implementation to be able
to realize in real-time one of eleven diffefent digital filter programming
forms. 1t is the function of the operating system to set up, control,
and possibly run diagnostic tests 1f something goes wrong, on the
minicomputer and its peripherals.

A functional block diagram of the operating system (0S) is shown
in Fig. 3.2. Solid arrows indicate a passing of control from one
routine to another, while dotted arrows indicate a passing of parameters.
Only one filter form is shown, but it should be remembered that eleven
such forms are present with similar links to the operating system-

Briefly, to realize a digital filter, a particular form is picked
and the parameters which determine the transfer function are input.

The 0S will then type back these parameters if desired. Once the filter
form is set up, the 0S is instructed to begin execution of that form.

Let us now discuss the different parts of the O0S.

Executive. The executive routine (EXEC) initially types a question
mark on the teletype. Whenever the question mark appears the operator
types in one of four commands: MODIFY, LIST, RUN, or TEST. The first
three refer to a particular programming form and are followed by.a
number between one and eleven. The TEST command refers to one of seven

diagnositc routines and should be followed by a number from one to seven.

3-17

‘wo3sds Burjeasdo jo wealerp MooTg ‘Z°€ °*814

i 7] saustorzzem
H ITXy
1
UOTSISAUO) i
eleq H
]
|
. Y
m 7 f13uy jpg——d
£17u 10ssaoo0xd
m T 1 e -! 3dnaaajug
|
|) |
e ———-)
| k 1 $
" : !
—»{ 3571 R
[]
" uny -4
3
™ £3TPOR
> - ogxa e—
#1 so3ysoulBeq

3-18

After one of the four commands is typed in EXEC turns control over to
one of the four routines having the same name. Let us briefly discuss
these routines.

1. Modify. The modify routine inputs the coefficients, quantization
formats, and sample rate for a particular filter form. EXEC determines
which of the eleven forms has been typed iﬁ following the command MODIFY,
then transfers controi to the modify routine, passing the filter form
number as a parameter.

2. List. The list routine types out the coefficients of a pro-
gramming form followed by the quantization formats and finally the
sample period.

3. Run. To begin the filter processing the operator would type
in RUN followed by the number of the form he desires to use.

RUN has a list of all entry points of the filter forms. When
the RUN routine is entered it immediately obtains the address of the
normal entry point and passes it to the interrupt processer which will
need it at a later time. Then RUN selects the sample period which the
user has specified for that filter form and outputs it to the RTC.
Next, RUN sets the mask of the real-time clock (RTC) and teletype,
starts the RTC, types out a question mark, and transfers control to
the initialization entry of the filter form specified. The filter form
makes its first pass and hangs up in the idle routines at the end.

While in the routine the RTC should interrupt.

3-19°

Interrupt processor. When the interrupt'occurs, control is passed

to the interrupt processor. This routine must identify what caused

the interrupt and act accordingly.

Users interface. The user interface consists of the teletype

routines plus the date conversion routines. The teletype routines
are relied upon by all the other routines which have to communicate
with the user. The teletype routines handling mumerical data rely on
the conversion routines to convert from decimal to binary and binary
- to decimal.

Diagnostics. Seven diagnostic routines are implemented in the
0S to test the hardwafe and the software structure. One of these-routines
may be executed by typing‘in the request TEST followed by a number from
one to seven. The errors that are checked for are divided into three
categories: hardware errors, errors in the programming of the 0S, and
last, user errors.

This completes the discussion of the 0S. We will now look at the
assembly‘programs.

Assembly Programs.

Each of the eleven filter programming forms is realized by a
separate subroutine which has the following format:

. ENTRY
INPUT
CALCULATION
OUTPUT
TIME DELAY
PRECALCUATION
IDLE
EXIT

3-20

There are two entry points to each program: one being an initializa-
tion entry point which zero's the internal variables the first time
through the program and the second a regular entry point that is
entered everytime except the first. After entering the normal entry
point a "start A/D" command is given and, while waiting on the input
to become available, a partial sum is formed. As soon as the input
arrives it is shifted to a correct format, multiplied by Ag, and the
sum is then completed. The sum is then quantized for output, presented
to the D/A, then quantized in a different format for storage and feed-
back. If overflow is detected during quantization, the word is saturated,
i.e., filled with the largest possible number.

After the output is complete, the internal variable must be shifted
to perform time delay. Then the partial sum for the next pass is begun.
Just enough of the formation of the partial sum is left for the next
pass to occupy the arithemtic unit while waiting on the A/D. During
the "idle" period, the RTC interrupts and the interrupt subroutine
directs control back to the normal entry point.

The coefficients as well as the three shift instructions used in
the quantizing routines are declared as external names so that they
may be altered by the O0S.

As an example of one of the eleven assembly 1anguage programs the
assembly language program for a second order D(z)‘in modified canonical

programming form is shown below.

3-21

SUBR MCAN1,ENT1
SUBR MCAN2,ENT2
ENT SHFT61,S1
ENT SHFT62,S2
ENT SHFT63,S3
ENT COEF6,A0

BEL
* INITIALIZE INTERNAL VARIABLES
ENT1 CRA

STA XMl

STA XM2
*CALCULATE OUTPUT DIFFERENCE EQ.
ENT2 OCP '41 . START A/D

LDA XMl

MPY ALl

DBL

DST TEMP

LDA XM2

MPY AL2

DAD TEMP-

DST = TEMP

INA '1041 INPUT FROM A/D

JMP *-1 WAIT FOR INPUT
St LRS 4

STA EI

MPY A0

DAD TEMP

SGL

STA SGN
s2 LLS 9

SSC

JMP 0Kl

LDA SGN

CSA

LSA ='77777

SRC '

TCA
OK1 OTA '40

JMP *-1
*CALCULATE FEEDBACK DIFFERENCE EQ.
- LDA EI _

MPY ONE

DBL

DST TEMP

LDA XMl

TCA

MPY Bl

3-22

DAD TEMP

DST TEMP

LDA XM2

TCA

MPY B2

DAD TEMP

SGL

STA SGN
S3 LLS 3

SscC

JMP OK2

LDA SGN

CSA

LbA ='77777

SRC

TCA

* PERFORM TIME DELAY
OK2 STA XM

LDA XMl

STA SM2

LDA XM

STA XML

ENB

NOP

P *-1
XM1 DBP O
EO BSS 1
XM BSS 1
EI BSS 2
XM2 BSS 2
TEMP BSS 2
SGN BSS 1

A0 0OCT 10000

ALl OCT -22753

ALZ OCT 7357

Bl OCT 3146

B2 OCT 231

ONE OCT 10000
END

Experimental Results

Experimental results were obtained of the minicomputer implementation

previously described.

3-23

First it realized the transfer function of a Euler integrator

D(z) = —L _ | . (1I-1)

1 -2z

in the direct form at its maximum sampling rate (5.5 KHz). The response
was obtained for an input sduare wave and as wished, the output was a

triangular waveform with a fine-grained stair-stepped appearance.

Secondly it realized the transfer function of a digital differentiator
D(z) =1 - 21 ' . (I1-2)

in the direct programming form. 1It's reéponse to a triangular wave-

form, a square wave, was as expected.

Lastly, the transfer function of a digital oscillator was realized

D(z) = ' 1 (11-3)
1 - 2cos(2rfT)z Y + 272

where T ié the reciprocal of the sample rate (5.5 KHz) and f is the
frequency of oscillation. The equation was programméd with bl ==1.75
which resulted in an output frequency of 450 Hz as predicted by
Eq. (II-3).

Experimentation demonstrated that the direct and canonical forms
" had the highest maximum sampling rate. The direct,‘canoniéal and
modified canonical formé have minimum sample intervals of less than 200

u-secs. The modified direct form has a minimum interval of about 225 u-secs.

3-24

The parallel and cascade forms have a minimum interval of about 275 p-secs,
while the remainder of the forms have intervals of approximately
300 u—secs;

The number of instructions required to implement the filter forms
(including coefficient storage), ranges from 98 for the canonical to
109 for the modified cascade. The entire operating system occupies
approximately 5000 memory locations including indirect links in the
base sector.

This concludes the discussion on minicomputer implementations of
digital filters. From this discussion it was seen that a minicomputer
can be adapted well for a real-time digital filter implementation; in
fact, much better than the larger SP computers because of the smaller
size. We will now look at even a smaller digital computer implementation,

that of implementation by special-purpose computers.

IV. SPECIAL-PURPOSE COMPUTERS

It is obvious to one that for most realizations of_a digital filter,
the general purpose computer and the minicomputer approach have several
disadvantages. The most easily seen disadvantage, as previously mentioned,
is the wasted hardware incurred because of the relative simplicity of
the difference equations that must be calculated for a realization. It -
is for this reason that the special-purpose computer approach to realiza-
tion is takén for a majority of the applications of digital filtering.

It will be shown in the following discussion of special-purpose (SP)
computer realizations that they are the most economical (hardware wise)

and demonstrate a great amount of versatility.

The realization techniques by SP computers will begin with the very
earliest method, which was sample and hold devices with analog networks
and conclude with present day commercial models that are available on

the market.

Implementation by Sample and Hold Devices with Analog Networks.

The first SP computer realizations of a digital filter were by sample
and hold devices with analog networks [23]. There are two main ways of
realizing a digital filter in this maﬁﬁer with them being: 1) series
discrete data networks, and 2) feedback discrete.data networks. There

is a third way of realization which is a combination of the above two

3-25

3-26

that will not be discussed since it is felt it is not essential to
illustrate the realization technique.

The series discrete data network which is used for the realization
of the discrete transfer function of a digital filter is shown in
Figure 4.1. The transfer functions of the two systems in Fig. 4.1

are related by
D(z) = GhOGc(z) (4-1)

Since the transfer function of the zero-order hold is (l-e_TS)/s,.it
can be obtained from Eq. (4-1) that

G (s)
=1 = — 02 | (4-2)
1 -2

z[

From this it is seen that given a specific D(z), the transfer functiom
Gc(s) of the discrete-data network can be determined from Eq. (III-2)
by taking the inverse z-transform.

If Gc(s) is to be an RC realizable transfer function, all the poles
of Gc(s) must be simple and lie on the negative real axis of the s-plane
with the exception of the origin and iﬁfinity. The.zeroes of Gc(s) may
be located anywhere in the s-plane. Therefore, Gc(s)/s can be expanded

into the following form by partial fraction expansion:

G (s) A m
c =< 4 Z _ﬁ(__.. (4-3)
) S k=1 s + Sk

3-27

el (t) et (t) eo(t) en (t)
o L | D) 2 —2 G (s) e

T ' T

|¥ . D(z) ' +|

(a) Digital filter.

Zéro—order
hold

e.(t) e (t) | e (O D)
o Ll Gho(s)—mf G (o) | LG (s)
[}

T T —————d
Zero-order Zero-order
hold hold
L, ; |
D(z) >
I !

(b) Equivalent series discrete-data network.

Fig. 4.1

3-28

where A and Ak are constants and 8, = [k =1, 2, 3,°"", m] are simple

negative real poles. The z-transform of Eq. (rri-3) is

2l =5 T 1-z1 (4=4)
k= -skT -1
l-e z
which has simple positive real poles inside the unit circle lz] =1,

with only one pole at z = 1. Comparing Eq. (4-4) with Eq. (4-2),
it is seen that in order for Cc(s) to represent an RC network, the
discrete transfer function D(Zz) must have the following properties:

(1) The number of poles of D(z) must be equal to or greater than
the number of zeroes of D(z).

(2) The zeroes of D(z) are arbitrary in location.

(3) The poles of D(z) must be simple, real and positive, and
lie inside the unit circle |z| = 1 in the z-plane.

It can be shown that for a feedback discrete-data network, the
feedback structure with a zero~order hold and the RC nétwork shown in

Fig. 4.26 is equivalent to the digital filter of Fig. 4.2a [23].

The transfer function of the two systems are related by

zZ] H(s)] = 1 [l#(]i)iz)_ 1 . (4-5)

3-29

JM___', D(s) >; 3| Cho (5)

T : T

ey (t)

Zero-order

'é—— D(z) ————9‘ hold
(a) Digital filter.
e1(t) ‘ >{ eg(t)
o— s Gho (8) 2
-t T |
' ‘ Zero-order
hold
H(s) ———
RC Network

(b) Equivalent feedback discrete-data network.

Fig. 4.2

3-30

In order to realize H(s) by an RC network, the discrete transfer
function D(z) must have the following properties:

(1) D(2) must have the same number of poles and zeroes.

(2) The poles of D(z) are arbitrary.

(3) The zeroes of D(z) must be simple, real, positive, and lie
inside the unit circle of the z-plane.

The reasons behind these restrictions are discussed in detail in
123] and therefore are not repeated here.

In summary it may be said that the listed restrictions and limited
flexibility of the above implementation techniques make their use and

practicality almost negligible.

Hybrid Implementation.

After observing the difference equations of several of the pro-
gramming forms which may be used for the realization of a digital
filter, such as the direct and canonical forms, one can see that these
equations might be computed by a device which performs the arithmetic
functions of addition, subtraction, multiplication and time delay.
This suggests the use of summing amplifiers, constant multipliers and
delay elements for the implemeﬁtation. Also, knowing that digital
filters may be implemented By SP and GP computers suggests the realization
of a digital filter by hybrid techniques, with hybrid meaning that analog
and digital methods are used for the implementation [10]. For most hybrid

realizations digital techniques are used for analog-to-digital (A/D)

3-31

conversion, digital-to-analog (D/A) conversion and time delay with analog
techniques used for the arithmetic functions of addition, subtraction,
and'mulﬁiplication. This type realization exploits the best and most
natural functions of both analog and digital elements to éliminate a
majority of the restrictions placed on the realization of the previous
section of the literature which used sample and hold devices with analog
networks. Anqtﬁer advantage of the hybrid realization which will be .
illustrated shortly is that once a D(z) is obtained, the filter can be
fealized directly from it. This will eliminate the need for additional
mathematical manipulation required for the derivation of an s-plane
transfer function from the D(z) as was required by the previous implemen-
tation technique. _ _

The hybrid implementation of a digital filter fits itself to a
majority of the programming forms of a given D(z). For simplicity sake,
we will look at the hybrid realization of a D(z) in two programming
forms; the direct form and the canonical form. These two'forms usually
have the simpliest difference equations which must be implemented for
their realization. |

For most hybrid designs an A/D converter functions as the sampling
device as well as an interfacing element for the input to the filter.
Integrated circuit buffer registers are usually used to store previous
values (in digitai form) of an intermediate variable that is internal to

the controller. ‘D/A converters provide the interface for the output of

3-32

the filter. Variable resistors at the input of a summing amplifier are
usually used to adjust the coefficients of the compensation function
continuously over a wide range of values. The equivalent of a zero-order
hold device is realized at the output of the filter as a result of the
digital data-storage elements within the hybrid unit.

The hybrid filter is designed, in this case, to realize almost
any compensation function up to three zero's over three poles in the
z domain with any sampling frequency up to several thousand hertz. If
a filter of order higher than three is required, several second or third
order filters are cascaded until the desired order is obtained. This
is usually done over constructing a higher order filter because of the
greater coefficient sensitivity for a higher order filter. It is seen that
the hybrid controller is extremely versatile and can be used to realize
a wide range of sampled-data compensation functions; thus, as previously
mentioned, it is not necessary to redesign the unit to change the
compensation function.

To obtain an insight into the design of a hybrid digital filter
for a given D(z), a hybrid implementation will be derived for the direct
and canonical programming forms.

Let us look af the direct form realization first. A second order

transfer function for a realizable digital filter can be written as

-1
bez) = a + az + a,z) Eo(z)
- - ’ -
1+ b,z 1, b,z 2 E;(2) (4-6)

3-33
: T
where the coefficients ay and bi are real numbers and z = e’

Equation (4-6) can be rewritten as

Eo(z) = aoEi(z) + aiz-lEi(z) + azz_in(é) - blz-lEO(z) -

bzz'ZEo(z) (4-7)

or in the time doﬁain as the difference equation
eo(kT) = aoei(kT) + alei(kT —‘T) + azei(kT - 2T) - bleo(kT -T) -
- (4-8)
bZeO(kT 2T)

where fS = 1/T is the sampling frequeqcy. Fig. 4,3 is a block diagram
of the hybrid realiiatién of the second order direct programming form
with double lines denoting digital information and the single lines
analog informétion. A detailed explanation of the components used for
‘the realization will be given after the block diagram of the canonical
form is given.

In order to realize the canonical form, we have previously seen
th#t for a second order D(z), the following difference equations must

be realized.
m(kT) = e (KT) - bym(kT = T) - b,m(kT - 2T) (4-9)

eo(kT) = aom(kT) + alm(kT'-.T) + azm(kT - 2T) (4-10)

PRECEDING PAGE BLANK NOT FILMEDf

3-35

The block diagram that results for a canonical hybrid realization is
shown in Fig. 4.4. It is easily seen hoV this form results after
careful consideration of the form of the two difference equations that
must be implemented.

The actual construction of the canonical implementation will now
be discussed in more detail. This form was chosen to be discussed
because of several advantages it has over the direct programming form.
One of the primary reasons, which is obvious from Figs. 4.3 and 4.4,
is that the canonical form is much more economical. For example, the
direct form réquires two A/D converters whereas the canonical requires
one. Also, if n is the order of the numerator of the D(z) being realized
and m the denominator, the direct form requires n + m dela&s whereas the
canonical requires the greater of n and m. This is also the case for
D/A converters. It can be said that in general anytime a D(z) is to
be realized by a hybrid realization, choose the programming form which
requires the least hardware.

Let us now discuss the analog and digital components of a hybrid
implementation. Observing the canonical.realization of Fig. 4.4, the
first step in a hybrid realization is the_conversion‘of analog informa-
tion into digital information by thevuse of an A/D. There are two types
of A/D's which might be used, the first being the successive approximation
tyﬁe and the second the count-up-to type.

Fig. 4.5a is a block diagram of a successive approximation type

A/D converter. The comparator compares the A/D input signal m (the

- Preceding page blank

e; (t)

' b (kT

) A/D

3-36

Delay |

D/A

m(kT-T

o (kT-2T)
Delay

D/A

D/A

Fig. 4.4. Block diagram of a hybrid realization of
a digital controller in canonical programming

form.

3-37

moq ——
N Logic LSB
Comparator| —P cir-
o ’ cuitr m (kT)
— ' y MSB
LSB + Least significant bit
MSB + Most significant bit
(a) .Successive approximation type
A/D converter.
Toq B
D/A. :___ :
: LSB
— Binary |
m, Comparator = counted—T—8# Tq (kD)
—> —————&p»1SB

(b) Counter type A/D converter.

Fig. 4.5. A/D converters.

3-38

signal m, is the output of the feedback summing amplifier as shown in
Fig. 4.4) to the quantized output Moq of a D/A converter. The signal
Bog is determined wholly by the digital word m(kT) which is in sign
magnitude code. The logic circuitry is programmed to "search for" or
"home-in on" the analog signal m,. Successive approximation type
converters are faster (commercial models are available that will convert
an analog signal to an 8 bit sign magnitude code approximation in
200 nsec) than the counter types which will be described shortly,
therefore they are used in a majority of applications.

Fig. 4.5b is a block diagram of the counter type A/D converter
In general it is slower than the successive épproximationtype converter
and is therefore used when the input analog signal m, is of lower
frequencies. This type of converter operates on the principle of
letting a binary counter count until its output decoded through a D/A
converter is equal to the input signal. When this occurs the counter
ceases operation and its output bit sequence (m(kT)) at this time is
a sign magnitude code approximation of the analog input m,. Before the
converter can be ready for the next conversion the binary counter will
have to be set such that all its bits are logic "0", with this being
completed before each conversion.

Of the two types of converters discussed above, it is recommended
that the successive approximation type be used for digital filter

implementations because of its ability to handle high frequency input

signals.

3-39

.The time delay indicated by Eqs. (4-9) and (4-10) can be
provided by clocked flip-flops. This means the information at the
inputs of the flip-flop is held or stored until the clock terminal
is pulsed, at which time the information that is on the input is
transferred to the output terminals.

The D/A converters shown in Fig. 4.4 are the iadder type networks
commonly used in constructing D/A's. From the Figure it is seen
that the contents of the time delays constitute previous values of
m(kT). These digital words are decoded by the D/A converters into
analog signals and are then available for further analog processing;
that is, multiplication and summation.

From Eqs. (4-9) and (4-10) it is seen that the aj and b, are
real numbers and may be positive or negative. This suggests the use of
operational amplifier circuits to perform the arithmetic operations of
multiplication and summation. From Fig. 4.6, which illustrates in
detail the summation and multiplication techniques for a second order
implementation in canonical programming form, it is seen that the
algebraic sign of the coefficients is obtained by inverting the output
miq of the ith D/A (multiplying by -1) so that mjq and “mjq are available.
From Fig. III-6 it is also séen that the maghitude of the coefficients
is obtained by variable input resistors to an operation amplifier.

Any hybrid digital filter implementation should generally be

implemented in the same procedure as the above. If there are variations,

they are usually small, and are left up to the individual designer.

3-40

1 1
A/D Delay Delay
(quantized) X y y
D/A D/A
-m -m
1q 2q
Sign of l§ 1§ 1§
coef.
15/ Vs Vs,
- + - ' _]
+m +m
T 0q g 29
, 1
+ 1/|al|
M 0oe .
A/D control O °
——’ X
Timing and + l/|a0|
Control y ?

Y
Shift pulse Sign of coef.

Fig. 4.6. Hybrid implementation of a second-

order digital compensator.

3-41

Digital Implementation.

The adaptation of a small SP computef for the implementation of
digifal filters only seems natural after a careful consideration of the
requirements that must be met for the realization of the difference
operations of a particular programming form. Let us consider the
requirements of the difference equations of an arbitrary programming
form since the requirements would hold for all forms. Let our choice
be the difference equations fequired for the realization of a D(z)
in the modified canonical programming form. These equations for a

second order D(z) are shown below:
eo(kT) = aoei(kT) + alm(kT - T) + oapm(kT - 2T) (4-11)
m(kT) = e;(kT) - bym(kT - T) - bpm(kT - 2T) O (4-12)

Observing the above equations we see that for them to be physically
realized a device must be used which'can add, subtract, mulfiply,
perform timé deléy,truncate and provide data storage. A device which
cah do all of this is a small SP computer. All of the components of a
digital computer can be organized into four main'funétioned units as
shown in Fig. 4.7,

Considering the functional requirements of a digital filter, we see
thét the Arithmetic Unit of the computer can perform the addition, -
subtraction, multipliéation, and the truncation required for thé

realization of the digital filter. The Memory can be used to perform

3-42

Input

Input/
Output

Output

Memory

S

Controller

Arithmetic

EEEEEE— Unit

Fig. 4.7. Four functional units of a digital computer.

3-43

the time dglay, coefficient storage, internal variable_sﬁorage, and
input/output storage required for a filter implementation. The Input/
_Output functional block of the digital computer will accomodate the
A/D and D/A converters if required for interface for a digital filter
realizafion; The Control Unit functional block of the digital computér
will accomodate the controller for the digital filter and the data
transfer logic which insures correct routing of data for the real-
izatioh of the required difference equations. At this point we seé
that all of the arithmetic, storage, input/output, and control require-
ments necessary for the implementation of a digital filter have all
been incorporated into the four functional blocks of a digital computer;
i.e., a digital filter may be realized by a.small_SP computer and its
functional diagram is shown in Fig. 4.8 [7]. The computer is said
to be small because it will be designed to only calculate the difference
equations for a particular programming form. Another reason the resulting
SP computer is small is because of reduced word lengths that are required
thereby requiring less hardware.

Now that it has been shown that a small SP digital computer can
be used for the realization of a digital filter, it is now appropriate
to discuss how one would go about designing a SP computer realization
of a digital filter and the considerations that must be made while doing
this. |

The design consists of three parts: first, the determination of

quantization levels in the computer (input quantizing, round-off errors,

3-44

Internal
Variable
Storage

Coefficien

Storage

|

3

Truncator]

| W

Output Storage

— A —l—t

Input Storage

Adder

sSubtractof
Multipltex

[_____J

Accumulator

A
I N B D R -1J 1
r1y - T —-- - ;__—"—_'“'-—"
| YVY
|
: Control Data
I Function | /A /Mgl Transfer
: Generator
|
!
!
I A I
rTc % - -1 --—--
|
Input
: A/D ——3» D/A >
|
|

Input~-Output Equipment

Fig. 4.8.

Functional diagram of a digital filter.

Arithmetic
Unit

3-45

and filter coefficient quantizing); second, the logical design of the
computefs components; and third, the interconnection of the computers
componénts to implement the above mentioned quantization levels.

The first step in the design procedure, the determination of
quantization levels, will nbt be covered here since it would bé a
reiteratioﬁ of earlier sections of this work. As a reminder
though, one could usé several techniques to do this, among them being
the CAD program and different quantization error analysis techniques.

Next consider the second step, which has not been presentéd
previously and will be discussed in depth.

The second step in the design of any SP computer implementation of
a filter, as previousiy mentioned, consists of the logical design of
the computer components{ All of the components will be grouped into
four main component groups with these being, 1) Input/Output components,
2) Arithmetic components, 3) Memory components and 4) Controller
components. The discussion will begin with the design of the input/
output components.

1. Input/Output Components

When designing the input/output equipment for a digital filter the
first deéision to be made is that of what type information will be the
input and éutput of the filter, i.e. is the input/output of the filter
going to be in analog or digital form.

If the input and output of the filter is in digital form the design

problem will usually be minimal since the filter normally operates on

3-46

digital inputs and outputs in digital form. The only problem that might
be encountered if the application of the filter is such that it will
have digital input/output is that of synchronization between the device
that is supplying the filter its input and the filter. Provisions must
be made when designing the filter such that it will accept a digital
input word from a device which is supplying it.

For many applications of digital filtering, the
filter will be operating in an environment composed mainly of analog
signals which will necessitate input/output interface elements for the
filter. These interface elements will be A/D converters for the input
to the filter and D/A converters for the output of the filter as shown
in Fig. 4.9.

First let us discuss the selection of an A/D converter. The first
decision to be made is how fast should its conversion speed be. In
general this is dictated by the frequency of the input signal or the maxi-
mum sample rate of the filter. If the input analog signal is of high
frequencies and the filter is to sample at a high rate the successive
approximation type converter previously discussed usually would be
better since it is faster than the counter type. Next, a
consideration of the number of bits required for the digital approxi-
mation of the analog signal would be required. This can be determined
by knowing the maximum analog input voltage (Vmax) to the filter and
the maximum allowable quantization step length h. If these two parameters

are known the number of quantization steps required can be determined by

3-47

(SB) (SB)

I - A —— -
—-@-S--)--. Computing Device _'::'_'::

ej(t) —————— Memory . - ey (t)
) A/D —res Controller : p/A >
(LSB) .
Analog signal . Analo
signal
ei(kT Digital Signal eq (kT

Fig. 4.9. ‘A digital filter with its interface elements.

3-48

\Y
Number of Quantization Steps = ~fax . Qs (4-13)

h
Knowing QS, the number of magnitude bits (n) required for the A/D

converter can be chosen if n is the smallest integer such that
2" - 1) > Qs (4-14)

Now that the bit length and speed of the A/D éonverter is known,
the next step is the construction or selection of a commercial A/D.
In selecting a commercial A/D, there are many distributors available.
All one has to do to find them is to thumb through an electronics
or computer oriented magazine. A few pointers to remember when
selecting commercial A/D converters are that the faster their conversion
speed, the more they cost, and if internal reference voltages are supplied

they are also more costly than when the user supplies the references.

If a user were to construct his own A/D converter, its cost would
also be determined by its bit length, speed, and the construction of
circuits to supply reference voltages if they are not already available.
There is abundant material available on how to construct successive

approximation and counter type converters.

Chosing the output interface element, the D/A converter, is generally
one of the easier design tasks of designing a digital filter. If a D/A
converter is required, to construct an analog approximation

of the digital output of a filter, there are two basic types from

3-49

which to choose. One type has a current output proportional to tﬁe magni-
tude of the digital word it is converting and the other type has a voltage
output. Which type is chosen depends on the application of the digital
filter being designed. Most D/A converters are constructed from resistive
latter type ngtworks.

There are many commercial types of D/A's on the market today and
their manufacﬁurers are easily found by simply, as for A/D's, thumbing
through computer oriented magazines.

There are.several characteristics of D/A's that must be considered
when buying one. One consideration is if the D/A will have to be unipolar
or bipolar. Some D/A's will only operate in the unipolar or bipolaf mode,
and others can be connected to operate ip both. Another imbortant
characteristic to consider is the speed in which the conversion is made
and the settling time of the D/A. If operation of the digital filter is
in the low fréquency range, not as much attention will have to be paid.
to this as if it were operating in a high frequency range. As anyone
might speculate, the faster the conversion time and settling rate, the
higher the price.

2. Arithmetic Unit

When designing the arithmetic unit of a digital filter, the first
major decision that has to be made is that of parallel arithmetic operations
or serial arithmetic operaﬁions. Both schemes have been proposéd and both
have their advantages and disadvantages. ‘The question as to which method

is better can only be determined by the designer and his use for his filter.

3-50
'In generai parallel arithmetic operations are used when there is a
’desire for speed and serial arithmetic operations are desirable for a
minimum of hardware. Techniques of performing parallel and serial arith-
metic operations will be considered in more detail shortly.

The second decision that must be made when designing an arithmetic
unit of a digital filter is that of what type binary code to use. Since
the arithmetic unit must be able to add, subtract, multiply and perform
truncation, it would seem logical to use a signed one's complement or a
signed two's complement binary code. The reason for using these codes
over a straight signed magnitude code is because, with them, subtraction
can be performed by an addition process. Also, multiplication can be
performed by a shifting and addition process using these codes. Of the
signed one's complement code and the signed two's complement code it
seems that a majority of the time the two's complement code is used.

Now an example of an arithmetic unit organized in a parallel and
serial fasﬁion will be presented, starting with a parallel organization.

This particular arithmetic unit is able to add, subtract, multiply,
and perform truncation. The code used by the computer is a signed
two's complement code.

The arithmetic unit performs the addition and subtraction process
of two n bit words, A and B, by use of n full-binary-adders (FBA)
connected in the'configuration shown in Fig. 4,10, If addition is to
be performed (A + B), A and B are applied to the input of the adder circuit

and the output will be the sum of A and B. If the arithmetic operation

3-51

Bsp Ass B Anel By Ay By Ay By A By A,
W He Wi Wi Wit
FBA FBA | | |FBA FBA FBA FBA
n P e e P #2 #1 #0

I | ' ‘ v L

| SB S.-1 Sy Sy Sy S,

A= hgps Ay Tt Ay
B = Bgps Byo1 *** By

Fig. 4.10. Full-binary-adders used for addition and
subtraction of two's complement binary
numbers.

3-52

(A - B) is performed, then A is applied as it is to the input of the
adder and B is two's complemented and applied to the input. The resulting
output of the adder is (A - B).

Now that it has been demonstrated that we can add and substract
two words in two's complement code with FBA circuits, an accumulator will
be defined and it will be shown that with an accumulator and shift
registers, all the arithmetic operations of addition, subtraction and
multiplication can be performed.

A binary accumulator consists of a register, which stores a binary
number (the augend) in signed-magnitude form and upon receiving another
binary number (the addend) in the same form adds the second number to the
first and then stores the sum in the register. The logic diagram of a
parallel binary accumulator is shown in Fig. 4,11. Each flip-flop
in the accumulator functions as a modulo 2 counter. The augend is
initially stored in the accumulator and, during the addition process,
each flip-flop counts parallel incoming pulses representing the addend
bits and generates a carry pulse to the next significant bit when the
flip-flop changes its state from 1 to O.

To illustrate the use of the ﬁarallel binary accumulator in performing

the multiplication and summation process, observe the difference equation

ey (kT) = aoei(kT) + cm(kT - T). (4-15)

3-53

s LSB
29 (Least Sig~ _
nificant Sy MSB .
Bit) (Most Sig-
nificant g SB
' (Bit T (Sign Bit)

' m

Clear
Accumulator

Pulse

. Accumulate % ?.R ' - é
L{) L .
o
LSB

u Y sp

Fig. 4.11. Pparallel binary accumulator.

3-54

Let
ag = +1.25 = +(1.01)2
coefficient
cy = +0.50 = +(0.10)2 +5>0
- =>1
ei(kT) = +6, = +(110.)2
variable
m(kT - T) = =3. = -(011.)2
then
aoei(kT) = +110. cym(kT - T) = -011.
X +1.01 x +0.10
+110. -000.
+ 00.0 - 01.1
+ 1.10 - 0.00
+ 111.10 -001.10

and e (kT) = + 111.10 - 001.10 = +110.0 = +(6.)19 -

A simplified block diagram of a shift register and parallel binary
accumulator implementation of the example difference equation is included
in Fig. 4.12. The following sequence of events is offered to explain

the operation of this implementation.

1. Set the accumulator output to zero.

2. Load c3[+0.10] and m(kT - T)[-011.] into the two shift registers.

3. Apply an accumulate pulse, a shift pulse, another accumulate
pulse, a second shift pulse, and a third accumulate pulse
(abbreviate this sequence by asasa; the output of the accumu-
lator is now cim(kT - T)[-001.10].

4. Clear the shift registers.

3-55

Shift Register

Load Coefficients . Load Variables
Ass MSB SB N\ A8 MsB LSRN
| Shift Register ' : BP
. LSB
> O MSB

_':D———. Parallel Binary Accumulator
Accumulate Pulses _
;SB ‘MSB‘ ‘ .; ‘LSB

(BP) Binary Point

Fig. 4.12. Implementation of an example.difference equation.

3-56

5. Load ao[+l.01] and ei(kT)[+110.] into the two shift registers
while leaving cym(kT - T) shared at the accumulator output.
6. asasa; the accumulator output is now aoei(kT)
+ clm(kT - T)[+110.00].

Thus the difference equation is implemented.

There are other designs for accumulator of Figs. 4.11 and
4.12. One design which is used frequently uses FBA's and clocked
J-K flip-flops. This accumulator design is shown in Fig. 4.13. This
accumulator operates in the same manner as the previously discussed
design when used in calculating difference equations. The FBA's are
used to add the new input to the accumulated sum already in the accumulator
(stored at the output of the JK flip-flops) and once the new sum is
obtained an accumuiate pulse is applied which clocks the J-K flip-flops
and causes the input bits of the flip-flops to be transferred to the
outputs where it will be stored until the next accumulate pulse arrives.

As stated previously, serial arithmetic may also be used for digital
filter implementation. Let us consider it now.

Serial arithmetic is used mainly for two reasons: 1) there is
a savings in hardware which will be demonstrated shortly and 2) serial
arithmetic provides for an ingreased modularity and flexibility in the

digital circuit configurations.

3-57

Input to accumulator

[=\

A
FBA FBA FBA FB
or

FF FF

Accumulate

crear ‘ T t‘"': 1 i

Output of accumulator.

Fig. 4.13. Parallel binary accumulator .
" constructed from FBA's and
clocked J-K flip-flops.

3-58

The two's-complement representation of binary numbers is appropriate
for digital filter implementation using serial arithmetic because addi-
tions may proceed, starting with the least significant bits, with no
advance knowledge of the signs or relative magnitudes of the numbers
being added.

The serial arithmetic unit, as the parallel implementation, must
be able to add, subtract, and multiply and truncate.

The block diagram of a serial adder (subtractor) is shown in

Fig. 4.14.

Briefly it operates in the following manner.

1. All registers and the delay flip-flop are cleared.

2. Words A and B, which are to be added or subtracted, are
shifted into the shift registers to the left of the FBA
with their binary points aligned. The shifting stops when
the LSB of A or B reaches the LSB position in the register.
All registers are now properly set to perform the addition
(subtraction) process.

3. Now shift all registers to the right and the delay flip-flop
for the carry at the same time. The proper sum of difference

will be shifted into the register on the right.

If subtraction is being performed by the above circuit, the subtra-
hend will have to be two's complemented before it is loaded into its

appropriate register. This operation can be performed with a simple

3-59

. y J
Augend or Minuend —
Register y K
SB MSB ’ LSB Cin
A= _———
. _ FBA
SB [MSB LSB
B = -

Sum (Difference)

Sum

A8 MSB LSB \

.TIJ

| N S
Shift Register

Shift registers

Shift and add (sub) lead

Addend or subtrahend register

Fig. 4.14. A serial adder (subtractor) circuit.

3-60

sequential circuit which, for each input word, passes unchanged all
initial least significant bits up to and including the first "1" and
then inverts all succeeding bits. The circuit that will do this is
depicted in Fig. 4.15 [18].

A serial multiplier configuration is shown in Fig. 4.16. This
multiplier will only multiply two positive two's complement numbers,
which does not restrict it, since the circuit of Fig. 4.15 can be
used to two's complement any negative number that must be used in the
multiplication process. Also, one's complement numbers may be multiplied
by this circuit since if they are negative they may be complemented by
a simple circuit to obtain the positive form. If this is done for a
two's complement or a one's complement code, the sign bit of the resulting
product will have to be retained and if it is negative, the resulting
product term will have to be complemented appropriately.

Briefly, the serial multiplier of Fig. 4.16 works in the following
manner. There are three shift registers Z, X, and Y, a serial adder
and a half adder. The sign bit leads the serial word as indicated by
the subscripts of the letters Z, X, and Y. All bits except bits X; and
Y1 of registers X and Y form a combined shift register. Register Z is
also a circulating register.

Initially, the multiplier is stored in register Y with the sign bit
in Y;. Next the multiplicand is serially transferred to register Z with
the sign bit in Zy. Sign bits Zj and Y, do not move during the succeeding

shifting of the contents of registers.

3~-61

Input
.Ji‘-i)— - Input

Reset
Fig. 4.15. Serial two's complementer.
]
From two's L N) Zg
complementer
device which _ :] _ Delay |ue
makes sure 31—+ 2, Zg 9 21
numbers are -
ositive
post cy C,
L ——m={ FBA
r—b{
Z
+l
= X X3 %6 Yol Y3] | Y M
X, X Y, o Y5 |
X

Fig. 4.16. A serial mﬁltiplier.

3-62

The value of 1 or O of the least significant bit of the multiplier
in Y¢ determines whether or not the number bits of the multiplicand
are to be added; and the addition, if there is one, is carried out.
Also during this addition time, the circulating register Z restores its
original contents and the partial product is serially inserted into
register X, occupying bits Xy to Xg. The combined register is then
shifted 1-bit to the right; during this shift, any carry bit left in
the delay flip-flop is shifted into X9, and the least significant bit
is now at Y,. The next addition begins at X6 but not at bit Y,.

After the right shift, the least significant bit of the multiplier
in Yg is lost, as Y; is not a part of the combined register. Y6 now
contains the second least significant bit of the multiplier, which
possibly could initiate another multiplication.

This process of addition and right shifting continues until all
multiplier number bits are shifted out of the combined register. After
this, the product is available in the combined register with the most and
the least significant halves of the product being stored respectively
in the X and Y registers. When there is no round-off thé sign bit will
be iﬁ Y;. When there is round-off, 1 is inserted into bit X6, and the
sign of the product is inserted into bit X After this the number in
register X is in desired order 124].

When using the multiplier described above, the product term addition
required for the completion of the difference equation calculation pro-

cess can be handled by the serial adder previously described.

3-63

There are other techniques of parallel and sefial multiplication
that will not be discussed here. One techniqué which makes pérallel
multiplication much faster is the Wallace technique described in [25].
Likewise, there is a serial multiplication technique presented in [18]
which makes serial multiplication much faster.

Usually when a difference equation is calculated by a digital
filter, it is reduced in bit length Before it is stored in memory or.
the output register. It is the purpose of the reduction logic of a
digital filter to do this. Most reduction logic éither pe;forms
truncation or.round—off with most being truncation type.

The circuitry required for reduction logic is usually simple since
it is usually a combinational iogic circuit. Shown in Fig. 3.14
is reduction logic which will truncate a signed magnitude binary word
with 14 magnitude bits (8 to the left of the binary point and 6 to the
right) such that it has 6 bits to the left of the binary point and 2
to the right. The lower four bits that are truncated are omitted from
the truncated word and anytime the untruncated word has a weighted bit
in one of the two most significant bit positions, every bit of the
truncated word will be a weighted representation, i.e. the truncated
word is saturated.

3. Memory Design.

The memory of a digital filter is used for coefficient storage,
interval variable storage which performs time delay, input word storage

and output word storage.

3-64

Nty

Un-Truncated
Input Word. Xe

Truncated Output
Word
with Saturation

800007

® BP

J1

BP -+ Binary Point

Fig. 4.17. Reduction Logic

3-65

There are two types of memory that are usually used for digital
filter implementations: 1) flip-flop type memories, and 2) read-only-
type memofies (ROM) .

FA majérity of the time flip—floﬁ type memories are used for internal
variable storage (m(kT - T), m(kT - 2T),***,m(kT ~ nT)) which is required
for the implementation of the time delays and also for the storage of
the input and output variables of the filter. Shown in Fig. 4.18 is
a flip-flop type memory for the storage of m(kT - T) and m(kT - 2T)
required for the rgalization of a second order D(z) in the modified
canonical programming form. The word lengths in this figure are 8
magnitude bits with 6 of them to the left of the binary point. For
this type memory construction a time delay is performed when the J-K
flip-flops are clocked; m(kT) becomes.m(kT - T) and simulfaneously
m(kT - T) becomes m(kT - 2T). The input and output storage registers
are constructed the same way as the first column of flip-flops in
Fig. 4.18.

ROM type memories are used mostly fqr coefficient storage. The
coefficient values are loaded only once into the ROM and they are
read out when they are needed for an arithmetic operation.

Digital filters may also employ simple single pole, double throw
switches for coefficient étorage. This is usually done for versatility
as the coefficients may be changed-by a simple toggle of a switch.

The only disadvantage of this is that the coefficients cannot be changed

3-66

m(kT) ~ m(kT-T) M{kT-21)
/7 N / \ / N\
SB] Q] Q}——p
e TR -
MSB
S J —
r Q - Q
De K Q X
= -
JQ J Qp—»
LD-—--KE =K Q
T 1 J Q =] Q>
e < q q
=] QpF—
—9- 117 @ = e
Dk g
o> JQ JQf——
& Ka —Ka
BP FE!::
JQ =~ J Q>
_
K Q KQ
LSB1ﬁ I R Jq
. Dﬁ =K Q K Q
Clock
Fig. 4.18. Internal variable storage for a second order

D(z) in modified canonical programming form,

3-67

while the filter is operating in real-time. It must be stopped and
then started over again. The reason for this is that the switches
can't all be manually thrown during one sample period which would be

required.

4. Controller Design.

The controller of a digital filter emsures the proper calculation
of the difference equations being realized by tﬁe filter. As an
example of what a controller must do, let us considér the calculation
of the difference equations of a second -order D(z) in the modified

canonical programming form. The difference equations are shown below

m(kT) = ej(kT) - bym(kT - T) - bym(kT - 2T) ' (4-17)

Eq. (4-16) will be calculated first as it is desirable to obtain
an output as soon as the input is available to the filter. One
possible operation sequence that the controller may assume for a

.

parallel arithmetic realization using an accumulator is listed below:

1. Activate the A/D so that e;j(kT) can be obtained.

2. shift the m(kT - T) and m(kT - 2T) storage registers to
perform tiﬁe'delay.

3. Clear the accumulator and its associated shift registers.

4. Load ¢] and m(kT - T) into their respective shift registers.

3-68

5. Perform the multiplication clm(kT -T).

6. Clear the accumulator shift registers.

7. Load c, and m(kT - 2T) into the shift registers.
8. Perform the multiflication com(kT - 2T).

9. Clear the shift registers.

10. Load ag and e;(kT) into the shift registers.

11. Multiply aoei(kT). The output of the accumulator now contains

age; (kT) + cim(kT - T) + com(kT = 2T) = eo(kT).
12. C(Clear the accumulator and the shift registers.
13. Load -b; and m(kT - T) into the shift registers.
14, Multiply -by m(kT - T).

15. Clear the shift registers.

16. Load —b2 and m(kT - 2T) into the shift registers.

17. Multiply -bom(kT - 2T).
18. Clear the shift registers.

19. Load e;j(kT) and 1.0 into the shift registers.

20. Multiply 1.0e;(kT). The output of the accumulator is now

ej (kT) - blm(kT = T) - bym(kT - 2T) = m(kT).

Repeat same process again.

To ensure the correct sequence of operations that must be performed

and the correct transfer of data such that there will be data available

when required, the controller is divided into two parts:

1) the control

3-69

functlon_generator and 2) the data transfer loglc. The cnnrrol function
geﬁerator is simply.a logic circuit which has as its output a sequence
of pulses (with their timing and spacing very important) which controls
the operation of the arithmetic unit, input/output, and memory. The
data transfer logic is simply combinational logic circuitry which, under
command from the control function generator, transfers data ta and from
the memory, input/output, and ari£hmetic unit.

The first step in designing any controller is the selection of an
operation sequence, such és the previous example. After this is
complete, the control function generator and then the data transfer
logic may be designed.

Now that an approach has been presented by which all the functional
combonents of a digital filter may be designed, the only remaining
désign consideration remaining is the interconnection of all four
functional components suéh that they may function as a digital filter.

The interconpéction of the functional units may be done in numerous
ways. No specific approach will be given here since, in most cases,
each designer of a digital filter has what he thinks is his own unique
and novel way to interconnect the functional components. In general,
the connections of Fig. 4.8 must be made in as mo&ular fashion as
possible for posSiBle LSI realizations. If they vary it will be because

of programming form variation and order of D(z) variation.

3-70

Now that a basic SP computer implementation of a digital filter
has been discussed, it will be in order to discuss variations of the

SP computer implementation.

Implementation by Microprogrammable SP Computer.

The three previously discussed implementation techniques all
have limitations, the most noticable of these being that each type
implementation will realize a D(z) in only one programming form. It
would be advantageous to design a digital filter which would realize
a D(z) in any of the eleven previously discussed programming forms.

In answer to the question that may arise as to why is one pro-
gramming form better than the other; it can be shown, as discussed
previously, that for a particular D(z) with set coefficients and
sampling rate, different programming forms have different quantization
errors. In general, for a particular D(z) that must be realized, it
is desirable to choose the programming form that introduces the least
quantization error, therefore necessitating the need for a digital
filter implementation that can realize a D(z) in several programming
forms. The implementation approach taken to do this is a microprogram-
mable design as discussed in [12].

It will be the purpose of this section to give a discussion of
the computer organization and not to go into too much detail about the
logic design since it is not necessary for an understanding of the oper-

ation of the microprogrammable implementation.

3-71

The prime function of the SP computer is the realization of a
second-order digital filter in a choice of digital filter programming
forms. As for the previous implementations this calls for the solution
of the appropriate difference equations and entails the operations of
addition, multiplication and time delay. The SP computer is binary,
synchronous and parallel, with the calculations to be done using 2's
complement arithmetic. It is a stored program computer, i.e., the
Control Unit looks up the sequence of instructions in the memory,
initiates arithmetic operations and causes operands or immediate results
to be transferred_between the Arithmetic Unit and the Memory, as
required by the program instructions. Synchronization of the computer
operations and generation of control pulses is the task of the Control
Unit.

To increase the sampling rate of the filter, a high speed Wallace
Multiplier is employed as described in [12]. Also a rapid-éccess
memory will be used for the program memory to aid in deéreasing the
worst case delay between the time of input sampling and its corresponding
output. |

A block diagram illustrating the four basic functional units of
a digital computer is as shown in Fig. 4.7. »Therefore, just as for
the previously described digital implementation of a digital filter, the
organization of the SP computer will be divided into these four units.

" A detailed block diagrgm of the SP computer is shown in Fig. 4.19.

The functional blocks in Fig. 4.19 which make up the Input/Output Unit

3-72

Manual Coef][Manual Data Eanuai' Ada1 Eanual Var.] [Program
Write Pulse|] Register Register rite Puls Register
!
Code
Translator
§ ['sample
Address | [Address
Select Select
Logic Logic emory Address
¥ g { | Registex
Memory Memory Data i
Address | }Address Select OP |,FiIst Tyecond
Registe Registe Logic Code Hﬁ%ggs Speran
Coefficient Variable
Storage Storage
16 x 16 Bits 16 x 16 Bits Program Memory
¥ F)
Coefficient Reg. Variable Registend
, . Instruction ¢ Register
- S e (0)3 irst econd .|
- d
High Speed Code §3§2“d dress
Multiplier - : J

) 4
Reduction Code
Logic Translator

[
Control ::::
Pulses , Control
| ' Matrix
[Timing Level
|_Generator
e System
Clock

Fig. 4.19. Block diagram of a microprogrammable digital
filter implementation.

3-73

t . 5

i

of Fig. 4.7 are the A/D converter along with its input register and

the D/A convertér and its output register. In many cases the input
register is considered as a part of the A/D converter and is not shown

~ separately. The Memofy.is composed of the coefficient storage, variable
storage, the program memory, and their appropriate memory address seiect
and data select networks. The coefficient register, variable register,
accumulator register, high-speed multiplier and the reduction logic
network comprise the Arithmetic Unit. Included in the Control Unit

,aré the sample clock, fundamental clock, binary counter, timing level
generator, qontrol matrix, the instruction register and its code
translator. In addition to the four basic functional units which are
generally used to represent digital computers, the SP computer in

Fig- 4.19 employs an Operator Control Unit. The Operator Control

Unit is used to program the SP computer for a particular filter form

and also allows the operator to load the coefficients of the transfer
function, D(z), into the coefficient storage locatiéns. The Operator
Control Unit can also be used in the testing and trouble shooting of

the computer.

At this point it would be desirable to present a brief description
of the operation of the SP computer. For purposes of illustration,
assume that a known transfer function, D(z), is to be realized énd that
a specific filter'programming form has been selected. With'reference
to the functional blocks of Fig. 4.19, the programming forﬁ is

chosen by setting the 4 bits in the program register to the proper values

AN

3-74

as will be defined later. Next the constants for the difference equations
are manually written into the coefficient storage after switching the
memory control switch, S, to the "1" position. Also, to control the
output reduction logic, load the shift key words into the variable

memory which are called by the quantize instruction to provide the

desired number of accumulator bits to be input to the D/A or to be
written into the variable storage. The programming of the SP éomputer

is complete and it now awaits the first input signal.

Normal operation begins as the sample clock gates the translated
code of the program register into the program memory address register.
The memory address register contains the address of the first instruction
needed to calculate the difference equations for the filter programming
form chosen. Stored in the program memory in groups of consecutive
addresses are the macro-instructions for all filter programming forms.
For example, the first seventeen locations in the program memory are
the macro-instructions for the direct programming form. Upon receiving
a read pulse, the program memory loads the 16-bit instruction register.
The instruction format is shown in Fig. 4.20. Its four MSB's comprise
the op code (operation code), the next six bits contain the first
operand address (coefficient address), and the last six bits contain
the second operand address (variable address). After the op code is
decoded into one of the eleven available macro-operations, the Control
Unit generates a corresponding sequence of micro-operations. Thus,
each macro-operation is built up as a sequence of elementary micro-

operations.

3-75

Op Code Second Operand Address

First Operand Address

!

4 bits 6 bits 6 bits

16-Bit Instruction Register

- Fig. 4.20. Macro~instruction format.

3-76

The remainder of the discussion of a micro-programmable realizations
wlll be devoted to the specification and organization of the four basic
functional blocks of Fig. 4.7.

1. Input/Output Unit.

As before, it is the task of the input interface element to digitize
the input analog signal e;(t) in the A/D converter and furnish this
digital signal'ei(kT) to the SP computer. The output, eg(kT), is in
digital form and is converted to a discrete analog output, eo(t), by
the output interface element, the D/A converter.

A/D Conversion. The A/D converter will be such that it may trans-

form e;(t) into a two's complement binary representation and thus will
be used as the input interface of the SP computer. Word size may vary
from several bits up to sixteen bits including the sign bit. It is
assumed that an A/D converter which meets the resolution and speed
requirements of the SP computer is available.

A 16-bit input register is used to hold the A/D converter output.
The input register functions to maintain constant values for the input
data bits during the period they are used. After each conversion the
A/D converter produces an end-of-conversion (EOC) signal which is used
to load the new digital word into the input regisfer. If the A/D
converter wordlength is smaller than sixteen bits, the remaining bits

of the input register must be filled in with the sign bit or zeroes.

D/A Conversion. Since the D/A converter is the output interface

element, the selection of a D/A converter type is determined wholly by

3-77

the requirements placed on ité output signal by the éxternal system,

This may lead to a D/A converter which converts a specified number of

| bits info‘either a unipolar or bipolar anélog signal, the external

system may require a pulse-width-modulated. voltage signal, or even yet,
may require a digital input, whereby a D/A converter is not néeded.

| For the particular micro—prograﬁmable digital filter being discussed,
the D/A was chosen so that a'bipolar analog voltage may be presented

ét the output.

2. Arithmetic Unit.

It is the purpose of the Arithmetic Unit.to pefform the multipliéa—
tion and accunmulation operations required to solve the difference
equations of the digital filter programming forms described earlier.
A.major portion of the Arithmetic Unit consists of a high-speed
- multiplier. Inputs to the Arithmetic Unit are the multiplier (coefficient
register), the multiplicand (variable register), and the accumulator
register. Both multiplier and multiplicand inputs are‘16-bits long
and are coded using the two's complemént representation. The output
of the high-speed multiplier is a 34 bit, two's complement number which
is stored in the accumulator register.

High Speed Multiplier and Accumulator Register. The data input

registers (coefficient and variable) and the data output register
(accumulator) are organized to permit the multiplication of the contents
of the input registers and to add the results to the contents of the

accumulator. The simplified block diagram of the Arithmetic Unit in

3-78

Fig. 4.21 will be used to explain the calculation of an example
difference equation. Note that the input to the accumulator register
is gated. This is necessary since the output of this register is fed
directly into the multiplier, i.e., the next state of the accumulator
register is dependent not only on the multiplier inputs but also its
own present state. Thus once the output of the multiplier reaches a
stable state the data is gated into. the accumulator register.

The example difference equation requires two multiplications,
with the results of each added to the contents of the accumulator
register. Before starting the calculations, the accumulator register
is cleared. 1Its initial contents are denoted by (Acc)o. Note that
the accumulator register supplies an input to each column (which corres-
ponds to a Wallace multiplier tree) of the array. This increases the
size of the multiplier structure slightly but eliminates the time delay
of an adder network which would other wise be necessary to add the
contents of the accumulator and the multiplier output. After the
first multiplication, the result is gated into the accumulator, be-
coming (Acc)l. For accumulation of the second product, aje; (kT - T),
(Acc)l and the partial products from the AND gate array are used as

inputs to the free network. The result,
eg(kT) = (12/16)(10/16) + (-10/16)(-6/16) = 180/256

is gated into the accumulator register after sufficient time for the

inputs to propogate through the Wallace multiplier trees.

3-79

Coefficient Register

Example dif
e, (kT)

let

0.1100
0.1010

0.00000000

0.00000000
0.0001100
0.000000
0.01100
0.0000

Y

Variable Register

High-Speed
Multiplier

'

Accumulator Register faf——— Gate Multiplier

Output to

Accumulator Register

ference equation:

= aoei(kT) + alei(kT - T)

a 0.75

o]
o |

(L

= 12/16 = 0.1100
-0.625 = -10/16 = 1.0110

e;(kT) = 0.625 = 10/16 = 0.1010
) =

ei(kT - T

(Acc)o

0.01111000

(Acc)1 = 120/256

-0.375 = -6/16 = 1.1010

1.0110
1.1010
0.01111000 (Acc);
0.00000000
1.1110110
0.000000
1.10110
0.1001
1

0.10110100 (Acc)2 = 180/256

Fig. 4.21. Calcuation of example difference
equation by Arithmetic Unit.

3-80

The first multiplication and accumulation operation is straight-
forward since both the multiplier and multiplicand are positive numbers.
However, this is not the case for the second operation. Note, that if
the product of the multiplier bit and the multiplicand sign bit is a
"one", it muét be repeated in the left-most positions. In the first
operations, this product was "zero" in all cases and thus the left-
most fill-in positions contain all zeroes. Also, note that the
negative multiplier in the second operation requires that the last
partial product term be the two's complement of the multiplicand.

This is accomplished by taking the one's complement of the multiplicand
and forcing a '"l1" into the Wallace tree for the LSB of this partial
pro&uct. This procedure is taken care of by the partial product
generation logic of the high-speed multiplier and is presented in
detail in [12].

Every phase of the multiplier has been demonstrated, except the
establishment of the length of the accumulator register. Multiplying
two 16-bit, sign two's complement numbers yeilds a 31-bit product.
Since the direct digital filter programming form requires the summation
of the greatest number of products (5) in the solution of any single
difference equation, this sets the required length of the accumulator
register at 34 bits. This means that if two maximum size 16-bit
numbers are multiplied and accumulated five times, a 34-bit register

would be required to express the sum.

3-81

Reduction Logic. There are several register lengths in the SP

computer which need to be analyzed; the 34-bit accumulator register,
the 16-bit data locations in the variable storage, and the N-bit D/A
converter. This is brought about by the use of the solution of the
difference equation in later calculations or as an outpnt, eqo (kT).

In the first case, this 34-bit solution must be stored in a 16-bit
location. Therefore it is necessary to quantize the output of the
accumulator register to 16 bits. - In the second case,.it is also
necessary to reduce the word length, since a 34-bit D/A would be both
expensive and impractical. Thus the need for reduction logic has been
~ clearly established. |

The number of bits in the output variable remaining after quantizing
the contents of the accumulator register is determined by the size of
the D/A converter. For an N-bit D/A converter the reduction logic may
select the first N least significant bits (LSB's), the first N most

significant bits (MSB's) or any intermediate group of N bits.

This selection of output data bits is accomplished by writing
into the variable storage ~a shift key word for each quantize instruction
in the program memory for a particular programming form. Part of the
instructions will contain the address of this shift key, which is read
from storage and gated into the reduction shift register, the contents
of which determine those bits of the accumulator register to be loaded
into the D/A or the variable storage. This is done by choosing the
appropriate bits of the accumulator and shifting these bits to the

left until they occupy. those positions with output lines.

3-82

3. Memory.

Each of the sections of membry shown in Fig. 4.19 provides
storage for a specific type of data. The memory, as previously dis-
cussed, is not only used for storage purposes, but is also utilized
to perform the time delay operations which are required to calculate
the difference equations. Included in the description of the memory
sections will be the memory address registers, the address select
logic and the data select logilc.

Coefficient Storage. Upon selection of a transfer function and

a filter programming form, it is necessary to store the proper filter
constants and coefficients to be used in the solution of the difference
equations. The coefficient storage is a high-speed Read/Write memory
which is composed of two memory modules. Each module has addressable
storage locations for sixteen 8-bit words. Proper connection of the
modules yields 9 (16 x 16)-bit memory as shown in Fig. 4,22,

Data is manually written into the coefficient storage locations
through the use of the data reéister, the memory control switch, manual
address load pulse, and the manually controlled write pulse on the
control panel. The address select logic in Fig. 4.22 is necessary
to allow the coefficient address to be chosen ffom the control panel
address register when manually writing coefficéint values into memory
or the first operand address portion of the instruction register when

reading coefficient values from memory.

Manual Address Register

Memory Control Switch

3-83

First Operand Address

Py

Address Select Logic

' Manual Address

Load Pulse

Coefficient Address
Register

Y

Memory Module
(16 x 8) Bits

s

. Memory Module
(16 x 8) Bits

EER |

Coefficient Register

Fig. 4.22..

Coefficient storage.

Data Input
16 Bits
8 Bits
g
8 Bits
.t

3-84

Variable storage. The organization of the variable storage, as

shown in Fig. 4.23, is similar to that of the coefficient storage.

Its function is not only that of storing the input, e;(kT), and the
output, eo(kT), but also that of performiﬁg time delay. Assume the
input sample, ej(kT) and its previous value, ei(kT - T), are stored in
memory; After the last computation involving ei(kT - T) is completed,
ej(kT) is written into the memory location allocated to ej (kT - T)
where it waits until the next sampling period to be used as ej(kT - T);
thus the time delay operation is performed.

Note that the variable storage requires both data and address
select logic. This is due to the variable storage being used by a
multiple of sinks and sources. Data inputs to the variable storage
may come from either the control panel, A/D, variable register or the
reduction logic. The variable storage may be addressed by the control
panel or the second operand address portion of the instruction register.

Program memory. The program memory functions as a storage location

for the macro-instruction necessary to solve the difference equations
of the various filter programming forms. These instructions are
organized into groups; each group corresponds to a particular
programming fprm. Within each group, the macro-instructions are
sequentially arranged as needed in the solution of the particular set
of difference equations.

The program memory is a high-speed ROM that has 256 words of 16

bits each. Each word (macro-instruction) is broken into three sections:

Second Operand Address

Manual Address Register

Address Load
 Pulse

3-85

Memory Control Switch

Manual Data

A/D

Variable‘Register
Reduction Logic

y

Address Select Logic ‘—J—p

Data Select Logic

;

16 Bits
Variable Address
Register
4 Bits
_ Memory Module 8 Bits
— (16 x 8) Bits <
—
8 Bits
Memory Module
—> (16 x 8) Bits ——
] ' 8 Bits
8 Bits l '
Variable Register 16 Bits

Fig. 4.23.

Variable storage.

3-86

the op code (4 bits), the first operand address (6 bits) and the second
operand address (6 bits). The op code specifies the operation to be
performed on the operands in the memory located at the addresses
specified by the two address fields. For op codes which require only
one operand (or no operand), that portion of the program memory is
blank, i.e., contains any combination of zeroes and ones. An example
is the store input instruction. Here the op code is "0101", the coef-
ficient address is blank and the variable address contains a 6-bit code
specifying the storage location in the variable storage which is to
receive the input data.

Since the program memory contains groups of macro-instructions
for all filter programming forms, it is necessary to be able to locate
the first address in each group once a form has been chosen. The
contents of the program register is translated into the program memory |
address of the first macro-instruction for each filter programming
form. Next, the sample clock gates the translated code into the program
memory address register (PMAR) and the first macro-instruction is
accessed by a memory read pulse. First and last in every sequence of
macro-instructions is a start A/D instruction. This is necessitated
by the overlapping of the instruction and execution cycle.

In order to program the SP computer, it is necessary to code
each digital filter form using 4 bits. Table 4.1 presents the coding

scheme for the filter being described in [12].

3-87

TABLE 4.1. Program Code

Program Register Contents
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010

1111

Digital Filter Programming Form
Direct
Modified Direct
Standard
Modified Standard
Canonical
Modified Canonical
Parallel
Cascade
Modified Cascade
Structure XI
Structure XII

Test Mode

3-88

As an example of the sequence of macro-instructions in the program
memory, consider the direct programming form with the difference

equation,

eo(kT) = aoei(kT) + alei(kT -7 + azei(kT - 27T)
‘ (4-18)

-bleo(kT - T) - bzeo(kT - 2T)

Table 4.2 presents a word description of the macro-programming
instructions for this form.

Notice that during the time the A/D is converting the analog
voltage signal to a digital signal the computer is calculating the
portions of the difference equations that do not require the digitized
input, ei(kT). This is intended to minimize the time delay between the
input sample and its output response.

The macro-instruction "Store (variable)" means load the contents
(where '"contents" is denoted by the enclosing parentheses) of the
variable register into the specified address of the variable storage.
Store (reduction logic) means to write the output of the reduction
logic into the variable storage. In order to permit the use of A/D
converters with different conversion rates, a ''wait on A/D" instruction
is incorporated. If the converison is complete at the time that this
instruction is reached, the next instruction "Store input" is executed;
otherwise, the computer idles until it receives the end of conversion

signal form the A/D. However, there may be instances when a high-speed

3-89

TABLE 4.2, Program Memory Contents for Direct Form

Op Code First Operand Address Second Operand Address

‘Start A/D

Clear Accumulator

Multiply & Accumulate ay e; (kT - 2T)
Multiply & Accumulate a; ei(kT - T
Store (variable) | e; (kT - 2T)
Multiply & Accumulate -b2 v . eg(kT - 2T)
Multiply & Accumulate ' -b; eg(kT - T)
Store (variable) | . eg(kT - 2T)
Wait on A/D

Store Input ei(kT - T)
Multiply & Accumulate ag ej (kT - T)
Quantize (Acc). , v _ Shift Key
Store (Reduction Logic) eo(kT -T)
Quantize (Acc) | Shift Key
Load D/A

Reset RMAR & Halt

Start A/D

3-90

A/D converter is employed. In this case the input e;(kT) is stored
and not utilized in the calculations until all other multiplications
are performed. This may also be an unnecessary delay in the response
of the filter. Thus, it may be appropriate to postpone the "Start
A/D" instruction in the program to ensure that the ''Wait on A/D"
instruction places the computer in an idle state.

The codes for the macro-instructions are listed in Table 4.3.
This table is used to generate Table 4.4, which presents the actual
contents of the program memory, the variable storage and coefficient
storage for the direct filter programming form. Addresses for the program
memory are encoded in octal in Table 4.4.

Note that in Table 4.4 the first and second operand address
fields are 6-bits, while the actual memories (coefficient storage and
variable storage) have only 4-bit addresses. Thus after loading
the instruction register only the four right-most bits of each of the
address fields are used as addresses for reading the contents of the
coefficient and variable storages. Notice, also, the shift key word
in the variable storage at location, 0100. This shift key is requested
by the quantize op code, 0111, and is loaded into the reduction shift
register. A shift key word exists for each quantize instruction.

Space is allocated in the program memory for the remaining pro-
gramming forms. They will not be illustrated since one may get an

idea of their structure from observing the direct programming example.

3-91

TABLE 4.3. Macro-Instruction Op Codes

Op. Code Operation

0000 ' Start A/D

0001 - ' Clear Accumulator
QOlO s Multiply & Accumulate
0011 Store (variable)

0100 ‘ _ Wait on A/D

0101 ' Store Inbut

0110 . . Load D/A

o111 - Quantizé (Accumulator)
1060 _ Store (Reduction Logié)
1001 | Halt

1010 Reset PMAR and Halt

: Not Used

1111

3-92

TABLE 4.4. Memory Contents for Direct Form.

Program Memory

(Address)g Op Code
000 0000
001 0001
002 0010
003 0010
004 0011
005 0010
006 0010
007 0011
010 0100
011 0101
012 0010
013 0111
014 1000
015 0111
016 0110
017 1010
020 0000
Address Coefficient Storage
0000 aj
0001 a;
0010 -by
0011 -by
0101

First Operand

Address

000000
000001

000010
000011

000100

Address

0000
0001
0010
0011
0100
0101

Second Operand
Address

000000
000001
000000

000010
000011
000010

000001
000001
000100

000011
000101

Variable Storage

ei (kT - 2T)
ei(kT - T)
eg(kT - 2T)
eo(kT - T)
Shift Key

Shift Key

3-93

Program Memory Address Register. Macro-instructions retrieved

from the program memory are read fromlmemory addresses contained in

the program memory address register (PMAR). Inputs to PMAR came from
the code translaﬁor and the control unit; Data from the code translator
is loaded ihto PMAR by the sample clock, whereas, upon receiving the

control pulse, "up date PMAR", PMAR performs the operation
(PMAR) + 1 - PMAR,

and now contains the address for the next macro-instruction. Since
there are 240 addresses in the program memory, the PMAR must be eight

bits long.

4, Coﬁtrol Unit

The program for a digital computer consists of a set of ﬁachine
operations such as addition and multiplication. Instructions for these
opérations have been referred to as macro-operations. Inside the SP
comﬁuter these operations are further decomposed into a set of elementary
operations called micro—operations. Count, shift, gate the memory
address register, are examples of micrq-qperations. Normally, in
general purpose computers, macro-instructions are at the programmer's
disposal and may be readily changed by re-writing the program. However,
as previously described, in this SP computer the macro-instructions are
pre-programmed in the program.memory, These instructions are sequentially
read from the program memory and loaded into the instruction register.

In the op code portion of the instruction register is a 4-bit code

3-94

which specified the macro-instruction to be executed. This op code
is fed to the control unit of the SP computer and a sequence of micro-
operations is performed for each op code.

It is the purpose of the Control Unit to translate the op codes
and supply all synchronization and control pulses to the rest of the
SP computer. A block diagram of the Control Unit elements is shown in
Fig. 4.24, These elements include the instruction register, a decoder,
a four-state counter, a timing level generator,.a control matrix, a
fundamental clock and an operation flip-flop, D. The organization and
function of each of these elements is discussed below.

Instruction register and decoder. As macro-instructions are re-

trieved from the program memory, they are stored in the instruction
register until the instruction is executed and a new one is retrieved.
Only the op code portion of the instruction register is employed by the
rest of the Control Unit, while the operand addresses are sent to the
coefficient énd variable memory address registers.

There are eleven macro-instructions which are used by the SP computer
to solve the difference equations of the various digital filter programming
forms. Each op code portion of a macro-instruction is translated by

the decoder into one of the macro-operations, f i=0,11, 2, *°* 10.

i
For each op code, the decoder activates one and only one output line.

Fundamental clock. Employed as a fundamental clock is a free-

running multivibrator whose frequency is obtained after determining a

basic timing cycle for the SP computer, which can be done after the

3-95

*3Tun oxjuo) *yz*y 811

AR 39594 a/v_uo 3rem
doas tenuey _ 1TeH
L:
’ a
3901D .
ejuswWepuUn v a
s

sasTng 1ITYS I9zTjuen)d Jaelg Tenuey . 003
NOOT) wdIsLg A201D ofdues —
91,
€. € — - 103BI3UY
ol XTI13BR TOI3U0H : T2A97 sutwy] pu
0 ‘ : J93uno) 98e3g Ino,
u & -— — i °9e3s I
0T AR o _ ? 7
3 . 3 * J
h ajeTnunddy pue ATdy3Tny .
_x9podaq .
SS1ppV SSa1ppy %

[Foeisd0 puodas] pueaadp umuﬂm— 2po) 4o |

3-96

detailed logic design of each functional unit is complete. Note that

a clock signal that is 1/4 as fast as the fundamental clock is used as
input to the Control Unit. This is because one of the micro-operations,
quantize (Acc), is a serial operation and requires these high frequency
pulses in order to avoid slowing the operation of the SP computer.

Four stage counter and timing level generator. There are fourteen

micro-operations (from which eleven sequences of micro-operations are
formed for the eleven macro-operations), and the control signals for
these micro-operations are designated as my, j=0,1, ¢*+, 13. The
number of timing levels for the execution of the macro-instructions

will require six states of the four stage counter, L, for all instructions
except multiply and accumulate, whose last micro-operation is performed
on state fourteen. Thus this macro-instruction is used as a control

input to the counter.

Control matrix. Basically, the function of the control matrix

is to provide the proper combination of op codes and timing levels.
Essentially, the control matrix is an AND-OR switching matrix.

Operation flip-flop. Controlling the operation of the SP computer

is the operation flip-flop, D. If D is set, clock pulses enter the
four stage counter under normal operations. Flip-flop D may be set by
three signals, the manual start, the end-of-conversion (EOC) signal
from the A/D and the sample clock pulse. It may be reset by the control
pulses, wait on A/D, halt, and reset PMAR and the manual stop button.

Note that when the computer is halted by reset PMAR, the first instruction

3-97

to be executed is already in the N register ready for execution. Care
must be taken to ensure that EOC does not occur before the wait on
A/D signal during the execution of a given filter programming form.

5. Operator Control Unit.

As mentioned eérlier, the Operator Control Unit is used in manually
programming the SP computer to realize the transfér function, D(z), in
the selected digital filter programming form. Referring to Fig. 4.19,
the elements comprising the Operator Control Unit are the manual data
register, the manual memory address register, two write pulse circuits
(one each for the coefficient and variable storage), a program register,
a memory control switch, a manual start pulse circuit, a manual stop
pulse circuit, two pulse éircuits for manually loading the coefficient
and variable memory address registers, a row of sixteen indicétor lights
and a monitor switch, and a sample clock enable switch.

Each of the registers méy be imﬁlemented with single pole-double-
thrqw (SPDT) switches for ease of setting and resetting.

Data may be entered into either the coefficient or variable storage
by setting the manual memory control switch to the "1" position, setting
the switches of the manuél déta register t§ the binary data value,
setting the address into the manual address register, loading this
value into the coefficient or variable memory address register, and
pressing the coefficient or variable write button.. Notice the data
register and memory address register are common to both the variable
and coefficient storage since each employs a separate load address and

write pulse.

3-98

Previous discussion has described the functions of the program
register, manual start button and the manual stop button. The indicator
lights and monitor switch function in checking the operational status
of the SP computer.

From the above discussion, one should understand the basics of a
microprogrammable digital filter implementation. If further details
are desired, one may refer to [12].

Next to be discussed will be the aspect of timesharing digital

filter implementations.

Time-Sharing of a Digital Filter Implementation

For many applications of a digital filter it is sometimes necessary
to provide discrete~time filtering for several independent léops or
channels with examples being in control systems and digital communications
systems. This may be accomplished with several digital filters but it
would be more practical, more reliable, and more econoﬁical to provide
this filtering with a special-purpose computer organized and programmed
as a time-shared digital filter [9].

There are two basic ways in which a digital filter may be time-
shared. The first of these is in multi-loops and the second is for
higher order D(z) realization.

Fig. 4.25 illustrates a digital filter being time-shared in N
control loops. It is seen that there is an enormous amount of hardware

saved by doing this. First there is only one computing element (SP

] Special-Purpose
" Computer

vz(t)
Vl(t)
&ultiplexed
: A/D
vy ()

Fig. 4.25. Block diagram of a digital filter being

3-99

D/A

. Time-Shared

I

D/A

D/A

time-shared in multiple loops.

(t)

L)

%1

e, (t)

3-100

computer) required and second only one A/D is required, whereas if
time-sharing weren't used N computing elements and N A/D converters
would have been required.

Fig. 4.26 illustrates a digital filter being time shared for
a higher order D(z) realization. This can be done by cascade or
parallel methods as shown in parts (a) and (b) of the figure. Cascading
or paralleling filters to obtain a higher order realization is preferred
because of the word length problem (resolution) that is encountered
for a single high order D(z) realization. Time sharing of a single filter
as shown in Fig. 4.26 can be easily accomplished if the assumption is
made that n is even and that D(z) can be factored into n/2 second-order
filters Fy(z), ", F

n/
order filters Pl(z), Pz(z), "‘Pn/z(z). Each of the second-order filters

2(z) and partial fractional into n/2 second-

may be realized by any of the available programming forms. The total
transfer function D(z) still has the same memory requirements, the same
number of memory locations in each filter storage unit, but now the
variables and coefficients of each second-order filter are the signals
stored. Since each second-order filter has the same program, the
control sequence generator just repeats the same sequence n/2 times
during each sampling interval.

Both cascade and parallel techniques are desirable methods for
realizing higher order D(z)'s, but the additional summing junction
necessary with the parallel method makes the cascade method better

suited for a modular realization.

3-101

(kT)
e_i_(& Fl(z) ,_____._. Fz(z) v o0 0es0sens -—-HFH/Z(Z) eo P

L |
< D(2) | >

(a)

eo(kT)

o Pl(z)

— Py(z) .

esao oo

—P /5 (2)

- (b)

Fig. 4.26. (a) Cascade and (b) parallel methods of
- realizing a higher order D(z).

3-102

For a better understanding of time-shared digitai filter implemen-
tations, let us look at the organization of a SP computer realization
of a 2nd order time shared digital filter which may be time shared in
two loops or cascaded or paralleled for the realization of a 4th order
D(z).

Fig. 4.27 is a functional block diagram of the SP computer
realization of two digital filters. Like previous SP computer realiza-
tions, the computer functions are still divided into four main categories;
input-output equipment, memory unit, arithemtic unit, and control unit.

fhe input-output equipment provides the interface between the analog
system and the digital computer. The analog inputs are sampled via the
multiplexer and A/D, and the output samples are demultiplexed and shared
in the buffered D/A's.

The arithmetic unit,for this type realization, also must be able
to perform multiplication, addition and subtraction. The selection
of an arithmetic unit must first entail the selection of serial or
parallel type arithmetic operation. Usually this choice means a decision
must be made between computational speed and hardware economy. The choice
made here was a reasonable fast and economical method where a parallel
binary accumulator and two shift registers are used to add up the pro-
duct terms as previously discussed. Serial arithmetic is used for
partial product multiplication in the implementation discussed in [18].

As before, the reduction logic truncates to maintain word-length
compatibility, and saturatién logic sets the output word to maximuﬁ

value when its range is exceeded.

3-103

"The memory is divided.into two identical storage units for filter-1
storage and filter—z storage. Corresponding filter signalé such as
el(k - 1) (short notation for ej(kT - T)) and ey(k - 1) have the same
relative storage locations in their respective storage units and have
fhe same addresses within their respective modules. The memory is
controlled by Read and Write commands (not shown) and two address
‘commands: a filter addresé to select the proper storage unit, and a
sighél address to select the pfoper signal location in a storage unit.
The filter selection logic is controlled by the filter address and
determines which storage unit is addressed by the signal address. This
modular_afrangement of the memory is .ideally sgited for the "wired-OR"
feature of integrated circuit memory. With this, feature sforagé for |
addi;ional filters can be added by hard-wiring inputs and outputs
of the storage units and simple modification of addressing.

The control unit contains the master conﬁrol unit,that provides
the multiplexing by means of the filter address and determines the
sampling rate for each filter by controlling the start of each difference-
equation computation. The control unit also contains the control-sequence
generator which providés a sequence of instructions, initiated by a
pulse from the master controller, to control the difference-equation
computations. Thus the hard-wired program of the control-sequence ’
generator determines the programming forms of the filters. To maintain
 simplicity, the same programming form is chosen for each filter, aﬁd

hence the same sequence is generated each time regardless of which filter

3-104

- - - -——— = —_ - - = = = =
' filter 1 Storage l
i |
| ep (k) ag; 1.0 eg(k) agy L0 i
! : oy - : -5, |
: e -y {711 771 epkemy P12 P2 :
| -l ep 1020 Tl desao P22 P22 |
[It 3 . I¢ .

i vk 2a1 Pyl Vot 2 “tn2 I
l vy le-n) vy (e} [
!

‘ |
! ,
{ |

CONTROL INIT — ARLTEETIE Berl.

I_Signal Addressi—; I Sig. Scl. .]
!
| Control I i
l g::::::gr ‘ l Var. Reg.] ICoef. RCE'J l
X
ISamplc I ; i |
IStart Busy ' Parallel Binary i
! Accumulator
l Master l 1 I
| Controller Xl | { l
ed
| Filter Address l ectoracion |
| Logic
L ==

il e i e

1

{ D/A 1 Output ¢ (t)

Troee L fEY

Mulei- A/D

De-]
aulei-

Input v /t)l lex
-—-—-1———T—rp exer plexer l l D/A I I Qutput e, (t)

L LopviowinT st — —

Fig. 4.27.

Block diagram of the time-shared
realization of two digital filters.

3-105

is being addressed and regardless of the number of filters being realized.
A priority system is provided so that once the computation of a difference
equation has begun, it is carried to completion even if it means that a

sample for another filter must be omitted.

Range Switching Digital Filter Impiementation

For many applications of digital filtering, it is desirable to have
a very fast sampling rate. An example of this is when very high frequency
signals are being filteredyand since the sample rate must be at least
twice the highest signal frequency, it is seen that very high rates'.
can be required. The limiting factors for'a filter's sampling rate
are the conversion speed of the A/D and D/A input-output system and
the time required in the arithmetic calculations of the difference
equations being realized. The most important factor which limits the‘
speed of arithmetic calculations is the bit-lengths of the data processed
internally by the filter. This includes tHe length of the input word to
‘the filter, the internal variable wordlength (length of ej (kT - nT),
m(kT - nT), etc.) and the output wordlength. 1In general, the shorter
these wordlengths are the faster the arithm¢tic calculations can be
performed, with this being true for serial and parallel arithmetic
type filters. Also, as a result of shorter wordlengths, the filter
hardware is reduced.

Because of the quantization error introduced by shorter wordlengths,

a scheme must be devised to eliminate the larger quantization errors

3-106

introduced by the shortened words. A method was devised to do this

and the resulting filter was called a "Range-Switching" digital filter

as described in [8]. 1In short, the filter with reduced wo;dlength
performed as if it had a much longer wordlength, under certain conditions.

A block diagram of the filter described in [8] is shown in Fig.
4.28. Its operation will now be described.

The A/D converter converts the analog input signal into an 8-bit
digital approximation allowing the digital output of the converter to
have an integer value ranging from 0 to 255. The input select logic
selects either the four MSB's or the four LSB's of the A/D output to
be the input to the SP computer. The scheme used is to select the four
LSB's if all the four MSB's are logic "0" or the four MSB's if either
one is a logic "1" for a signed magnitude code. It is seen from this
that the input to the filter is in either of one or two ranges. If
the input to the SP computer is from the lower range (four LSB's),
it may have any integer value between 0 and 15 in steps of 1. If
the input is in the higher range (four MSB's) it may have any integer
value between 16 and 255 in steps of 16. Of the two ranges, it is
seen that the higher range has the larger quantization step h and it
is 16 times that of the lower quantization step. This also means
that a four bit combination coming from the higher range input would
represent a magnitude 16 times the same bit combination combing from
the lower range input as shown in Fig. 4.29. Because of this,
before the special purpose computer can process its four bit input each

sample period, it must know the range from which it comes to properly reweight

- 3-107

- (8 bits) (4 bits) (8 bits) (12 bits)
e (t)] Special ~ eq(t)
——» A/D K :-'4)0 ™ Purpose 3; @ 'Eo D/A +—p—
3 0Q Computer + Q
o 4.:.,1 3 .
= & F=>

Fig. 4.28. Block diagram of a '"range-switching"
digital filter.

> 1 I This four bit combination

0 has a magnitude of 128 or
—>0 : 16 times that of the lower
A/D P—> 0 four bit combination.
» — 1
e 0 This four bit combination
o 0 has a magnitude of 8.
e 0 i

Fig. 4.29. The two magnitudes ranges.

3-108

the internal variables if a range change is seen from the last sample
period. The internal variables of the SP computer are 8-bits long and
can possibly be multiplied or divided by a factor of 16 each sample
period before calculation of the difference equations start or their
weight may remain the same. If there is a change in the input from the
higher to lower range the internal variables are multiplied by a factor
of 16 (the relative magnitude change of the input). It must be
remembered that this is being done to keep the weight of the input
relative to the internal variables. If the input represents a small
value, the internal variables must be increased to make the input appear
small. The opposite of this takes place when there is a change from
the lower to the higher range. In this case the internal variables
must be made to appear small to the large input, so they are divided
by a factor of 16. If there is no range change between sample periods,
the weight of the internal variables remains the same. The output select
logic in Fig. 4,28 1is employed to properly weight the 12-bit output
of the filter. The output will have its greatest weight when the input
for a particular sample period was in the higher range. If the input
for a particular sample period is in the lower range, the output select
logic weights the output bit configuration such that its analog voltage
level representation is 1/16 of that of the same bit configuration with
the input in the highef range.

It was mentioned earlier that the '"range-switching' scheme was

used to reduce wordlengths but at the same time obtain the accuracy at

3-109

the filter output of a much longer wordlength filter. Aiso, the "range-
switching" filter might be thought of as a techﬁique by which for a
fixea wordlength input, the quantization errors are reduced by the
range—switcﬁing process.

Filters of the "range-switching" design seem to have a bright
future, especially with the advent of LSI. Using a reduced wordlength
modular filter design, it would be very easy to have a digital filter
composed of four or five LSI chips.

One application of "range—switéhing" filters that has great promise
is that of filtering in nulling type control loops. First, the design
saves hardware because of the reduced wordlengths, it is fast and because
of the design of the filter, the quantization step length decreases és
ihe loop error is nulled toward zero giving the loop finer granularity
control to keep the error signal closer to zero.

A block diagram illustrating the components of the SP computer
realization of the '"range-switching" digital filter is shown in Fig.
4.30.

The input/output unit consists of a successive approximation type
A/D converter, a 12-bit D/A converter and the input/output select logic
which ére'gombinational circuits that select the input word and inéert
‘the output word into the proper bit position of the D/A. As previously
mentioned the outpht of the filter is an 8-bit word. The 12-bit D/A
converter is required such that the 8 oufput bits can be inserted into

the 8 MSB positions of the D/A when the input is in the higher range

3-110

r-—-"—--"—-"-"-"--"-"-"-"=-=-=-=-—=7-—==-=="="=="=""== |
| I
I 1 i —
|
Memory | Coefficient |
| Storage —#| m(kT-T) —&% m(kT-2T) 3% e (kT)
| aosc]_9C29‘b]_9 |
1 22 |
- - = - — — — _] - - - — - - _.._.é _______ |
r--—- === I e S e R R [
| I
| Uy |
Control | I
Unit , Data Control |
B% Transfer @& Function |
: Logic Generator |
L B T T L e J—- R e e — — - e e e — de]
'_ — e e e v e em— — em— w— s o e e— p— el e e ewm - 4 B —— — — el — — — j
: |
. : !
I Shift o Parallel 5nReduction
Arith.I Registers Binary Logic :
Unit | Accumulator |
|
I |
Y —
i i (S a
| g |
) I
I W Input | Fmbutput |
Input—l'—b A/D | gl Select Select} gm} D/A L ___gn Output
o Logic Logic |
: |
| % !
L o e o e e e e € J
Fig. 4.30. Functional diagram of a range adaptive filter.

3-111

and in the lower 8;bit positions of the D/A when the input of the filter
is in the lower range. In effect, a particular bit combination that

ié inserted into the lower 8-bit positions will have an analog voltage
1eve1-1/16 of what it would have been if inserted into the 8 MSB
pdsitions. It should be noted that the weighting factor of ﬁhe oufput
is the same as the input.

Parallel fixed point arithmetic is used in the arithemtic unit
in conjunction with shift rggisters, an accumulator, and the reduction.
logic to calculate the difference equafions.

The memory is composed of the cogfficieﬁt storage (SPDT Switches),
internal variable storage (flip-flop registers), and the output storage
(flip-flop register).v The-weighting of the inter;al variable memory is
under command of the controller. Since fixed point arithmetic is used,
multiplication or division by 16 is easily accomplished by shifting the
_interﬁal variables left or fight respectively four places relative to
the binary point. If a weighted bit is lost when left shifting, provisions
are made for the 8-bit internal variable to be‘saturated_(all one's for
a signed magnitude code).

In concluding the discussion of the hardwa;e implemeptation, the
control unit is composed of the control function generator and the data
transfer logic. In addition to the normal tasks of the control function
generator, it has the duty of deciding how the internal variables must

be weighted each sample period.

3-112

A common question arises as to what is the limit on bit-length
reduction. The most general answer to this 1s it depends on the appli-
cation of the filter. The method of determining the minimum bit length
1s the trial and error technique of simulating the filter in whatever
configuration it is to be used. As an example, the above described
"range-switching' filter was used in a pendulous integrating gyroscopic
accelerometer control loop. Time simulations in FORTRAN of the loop
with the filter inserted demonstrated that the loop could be stabilized
for pulse inputs to the loop with the filter having a 4 magnitude bit
input, 6 magnitude bit internal variables and a 8 magnitude bit output.
From these bit lengths it is seen that an LSI realization of the filter
would be quite small and simple.

At the present time further work is being done to investigate the
possibility of further bit length and hardware reductions of a digital

filter such that LSI implementations will even be more attractive.

LSI Circuit Digital Filter Implementation

The first complete LSI implementation of a digital filter was
designed and built by Autonetics Division of North American Rockwell,
Anaheim, California. Concerning the staté-of-the-art of digital filter
implementation techniques, the design was the ultimate. The design
is completely modular and therefore it is easily adaptable for an
LSI realization. There are 2 main chips, a serial-parallel multiplier

chip and a shift register chip.

3-113

The serial-parallel multiplier chip is arranged such that it can
perform all arithmetic functions required for a digital filter implemen-
tation: addition, subtraction, and muitiplication. The shift register
chip contains shift register memories for the internal variablés, input
word, output word and also the control circuitry of the filter.

The interface elements §f the LSI implementation are external to
the filter. The A/D output is fed into the filter in a serial manner
and the filter output is also serial. The binary code used by the
filter is two's complement.

The internal wordlengths‘of the filter are adjustable. To change
them, all one has to do is to make connection changes on the chips.

The filter as designed has fixed length coefficienté and each being
16-bits long. They are easily set by single pole double throw switches.

The filter realizes any first, second, or third order D(z) which

has real poles in the parallel programming form.

Commercial Digital Filtexs

Now that several digital filter implementation techniques have
been presented, a short discussion of digital filters available on the
commefcial market wili be in order. Because of the relative newness
of the area and the recent advent of LSI circuitry, there are few
commercial builders around, two of which are listed below.

One of the first builders of a digital filter for the commércial

market was the Rockland Systems Corporation of Blauvelt, New York. They

3-114

now produce a line of programmable recursive digital filters which meet
a wide variety of signal processing requirements. All of their filters
are composed of four basic components - adders, multipliers, shift-
register delays, and memory with a modular approach being adapted to
provide the greatest possible flexibility and efficiency as is described
in [18,19]. The basic components are usually combined into second-order
building blocks (two poles and/or two zeroes) and these blocks are then
combined or multiplexed to realize any number of filters of any desired
order. Programmability is achieved by employing a read/write coefficient
memory. Fixed filter characteristics may be obtained with a read-~only
memory. Rockland produces a series of filters designed in the above
manner. |

Rockland also produces a programmable tenth-order recursive digital
filter which can realize arbitrary "all pole" designs such as Butterworth,
Bessel, or Chebyshew low-pass, high-pass, or band-pass filters. Up to
10 pole positions can be programmed through ten 12-bit filter coefficients;
while up to 10 zero's can be positioned at DC or the Nyquist frequency,
or can be deleted altogether. Sampling rates of up to 100 KHz can be
achieved.

Electronic Communications, Inc. (ECI) is the second commercial
builder of digital filters to be discussed [26].

The filters produced by ECI are the nonrecursive type and they are
actually signal-processing instruments that perform the convolution

integral in order to effect a filtering function. This means the filters

3-115

wofk strictly in the timevdomain and is represented by its impulse

response and not by its amplitude and phase characteristics as are some
nonrecursive filters. The analog input signal to this filter must be band-
limited, and is accbmplished by using a low-pass analog prefilter. The
input bandwidth is restricted to less than half the sampling rate. One
of.their more common filters with a sample rate of 10 KHz has a pre-
amplifier cut-off at 2.5 KHz.

The ECI digital filter has two identical shift register memories.
One stores samples of the band-limited input signal, while the other
contains samples of the imﬁulse function of the filter that is desired.
Thé sampléd impulse response is represented by coefficients that are
the various amplitudes of samples spaced equidistant along the time axis.

The coefficients are obtained by using computer.software available
from the company and programmed into the digital filter via a paper
tape. The tapes are set up so that the programs can be put on a time-
shared computer system. Up to 200 coefficients can be stored in the
sampled-impulse-response memory.

The contents of the two memories are fed into a single multiplier
section that forms the product of corresponding sampies form each
memory. The output of‘the multiplier goes to an accumulator that puts
out the digitized filtered version of the input waveform.

The digital filter designed in this manner can only simulate zeroes
for the filter transfer function because of its nonrecursive nature. This

does not seem to limit its use though, as any filter can be represented

3-116

by its impulse response. There are few recursive filters whose impulse
response cannot be satisfactorily represented by ECI's nonrecursive filter.
This concludes the discussion on SP computer implementations. FFT

hardware realizations will now be discussed.

V. FFT HARDWARE

We have previously seen that a digital transfer function, D(z),
may be célculated by the FFT. The theory behind this was discussed,
enabling the diécussion of FFT hardware to now follow. Three area's
of FFT hardware will be discussed starting with commercial FFT pro-
cessors that are available and concluding with a discussion of the
MIT fast digital processor.

Commercial Equipment

There are severai manufacturers of FFT processors. One of these
is the Raytheon Computer Co. of Santa Ana, California. This company
manufactures what it calls an "Array Transform Processor.” This
processor has several capabilities, émong them FFT and Inverse FFT
processing, convolution integral processing, complex multiplying,
complex spectral magnitude processing, real multiplying, read add/
subtract processing, scanning of arrays and array movement.

The Raytheon array transform proéessor is an auxiliary processor
of the Raythean 700-Series computers and is a hardware array processor.
It comes in several models with the models differing in the number of
data points that can be handled (256 ~ 16384) and ;he wordlengths available.

Another company which manufactures a hardware FFT processor is
the Elsyter Co. of Syosset, New York. Their processor is labeled as
the 306/HFFT. It will calculate the direct or inverse FFT and it is

‘contained within the mainframe of its host NOVA 800 computer for more

3-117

3-118

efficiency and small size. It has a core memory of 4096-16 bit words
expandable to 32768 words. It has the features of hardware multiply
and divide, teletype interface, array complex coordinate converter to
perform Cartesian to polar and vice-versa conversions without program
intervention and an hardware FFT interface-subroutine to control the
operation of the hardware FFT.

It can be used in three modes: 1) Stand alone peripheral FFT
processor, 2) part of a free standing spectrum analyzer system, and
as 3) a free standing computer.

The last commercial FFT processor to be discussed will be the "FFT
256 FAST FOURIER TRANSFORM ANALYZER," a "stand-alone" processor manu-
factured by Unigon Industries, Inc., Plainview, Long Island, New ¥ork.
It is a smaller processor than the one previously discussed in that it
has a capacity of 256, 1024, or 4096 real points and a wordlength of
8-bits.

This processor performs the functions of the direct and inverse
FFT, power spectrum and cross power spectrum analysis, square spectrum
analysis, auto correlation, cross correlation, convolution, convolution
spectrum and auto correlation. Each one of these functions is switch
selectable. Let us now discuss a fast digital processor designed
by MIT.

MIT Fast Digital Processor [27]

There are many techniques by which GP digital computers may be

modified or enlarged to increase the operating speed. As an example,

3-119

speed savings may Be attained by attaéhing fast multiply and diyide
hardware or by having separately addressable memory modules so that
iﬁstruction cycles and data cycles may be overlapped. Increases in

speed results from attaching arithmetic hardware which performs high

speed speciai operations such as digifal filtering and discrete spectrum
analysis. If this arithmetic hardware is added in addition to a high

speed memory, speed increases on the order of 40 to 100 can be attained

in performing operation such as the FFT. This technique has a disadvantage
in that it requires programming that is not easily structured, which

in turn decreases the speed advantage of the special hardware.

It was because of this that emphasis was directed toward incorporating
more general purpose features into é signal processing computer structure.
What resulted was the MIT fast digital processor which is a general

purpose digital attachment to a UNIVAC 1219 computer. The architectual
changes required to increase the speed of repetitive arithmetic operations
for signal processing can be classified as 1) the use of scratch pad
memories, 2) pipeline schemes, and 3) parallel processing.

The fast digital processor (FDP), designed with the above architectural
changes in mind, is able to perform signal ﬁrocessing simulations close
to two orders of magnitudes faster than Present conventional digital
computers. As an example, a vocoder simulation which normally requires
about 200 times real time oﬁ a standard computer, could be programmed

to operate close to real time on the FDP.

3-120

The main applications of the FDP are in the areas of communication,
radar, speech processing, biology, medicine, and sonar.

Fast commercial integrated circuit elements and a logical structure
which permits each main unit of the machine to operate at maximum
speed enables the FDP to obtain a speed advantage.

The arithmetic section is designed to perform efficiently the
sum-of-products operations which are most important to recursive
digital filtering, the FFT and correlation operations.

The data memories are structured so as to exchange data with the
arithmetic section at maximum efficiency.

‘The control uses a separate memory for storing instructions. Its
structure allows the data memories to operate at maximum speed.

Let us briefly describe some of the main features of the FDP
structure.

FDP structure. Fig. 5.1 shows the most important data transfer

paths of the FDP. Programs are run from the memory MC, which controls
the main data flow from memories M® and MP to all elements shown in

Fig. 5.1. Since M® is intended to be a small memory, longer programs
can be stored in M® and MP and block transferred to M® when needed.

Ma, Mb, and M® are addressed independently and can therefore be operated
in parallel. Except for block transfers from M2 and Mb, the control
memory M® cannot be written into making the programs run by the FDP

almost non-self-modifying.

3-121

UNIVAC
Memory

A/D D/A

"—El EO i

256 6

M®(left) MC(right) 2>

1024 M2 M | 1024
Read or
Write
140 ms
.18 R 18

Fig. 5.1. Structure of the MIT fast digital processor.

Fig.

3-122

The parallelism inherent in the FDP is partially indicated in

5.1. Listed below are a few special features incorporated for

speed:

word.

1) four arithmetic units, each including a‘multiplier which can
operate in parallel with the main arithmetic registers;

2) two independently addressable integrated circuit memories,
M2 and MP with read and write times of 140 ns;

3) a separate instruction memory, which allows overlap of instructions
and data cycles;

4) a double length instruction word which enables two instructions

to be simultaneously executed on the FDP.

The size of M® and MP is 1024 words and is addressed by a 10-bit

Addressing is indirect, through Md, a l6-register 24-bit integrated-

circuit memory, as is shown in Fig. 5.2. The indexed address for M2

and Mb is formed by adding the contents of the two 12-bit portiomns of

M to X@ and XP. Writing into md requires no special instructions

because addresses 0O through 15 of M2 and MD are wired to comtrol Md

as well as the data memories on a write cycle.

The I/0 capabilities of the FDP were minimized deliberately since

the UNIVAC 1219 already supplied most of the necessary I/0 control. An

A/D and D/A converter were applied to make the FDP applicable for real-

time

processes. The only other I/0 path is to and from the mother

computer, the UNIVAC 1219, which will be needed for assemblying and

editing FDP programs and supplying medium size core storage.

3-123

6 4 4 4 Instruction
from
1| o | ¥ | xa]xb M. (left)
12 12 S 12 12
1{ Md (1eft)| Md(right) jug—r xa xb
+

+

18 | ' .18

M2 MP
T to 4096 , to 4096

\ Data. / -

Fig. 5.2, Memory addressing.

3-124

The FDP is an 18-bit fixed point processor. Floating point routines

may be used but must be programmed, as must multiple processor arithmetic.

(11

(21

(31

[4]

[5]

(6]

(7]

(8]

(9]

[10]

{11]

[12]

3-125
REFERENCES

S. A. White and T. Mitsutomi, "The IC Digital Filter: A Low Cost
Signal-Processing Tool," Control Engineering, pp. 58-68, June 1970.

S. C. Silver, "The Digital Filter: Potent Processing Tool,"
Electronic Products, pp. 32-37, March 1970.

L. B. Jackson, J. K. Kaiser, and H. S. McDonald, "Implementation
of Digital Filters," IEEE International Convention - 68, New York,
N. Y., March 1968.

D. J. Gawlowicz, "A Programmable Digital Compensator for Single-
Loop High Performance Digital Servomechanisms," Grant NsG-36-60,
Case Institute of Technology, Cleveland, Ohio, 1965.

A. Deerfield, "Canonical Digital Filters," NEREM - 67, Boston,
Mass., Novenber, 1967. .

C. C. Carroll, H. T. Nagle, Jr., and H. H. Hull, "On the Realiza-
tion of a Generalized Second Order Digital Compensator," Record of
the IEEE 1968 Region 3 Convention, pp. 13.1.1-13.1.5, April, 1968.

H. T. Nagle, Jr., and C. C. Carroll, "Organizing a Special Purpose
Computer to Realize Digital Filters for Sampled-Data Systems,"
IEEE Transactions on Audio and Electroacoustics (Special Issue on

Digital Filters), Vol. AU-~16, No. 3, September, 1968.

C. C. Carroll, J. R. Heath, and H. T. Nagle, Jr., "Reducing Quan-
tizer Deadband with a Range Switching Digital Filter," 1969 Com-

puter Group Conference Digest, pp. 68-81.

C. C. Carroll and J. W. Jones, Jr., "A Time-Shared Digital Filter
Realization," 1969 Computer Group Conference Digest, pp. 74-77.

H. T. Nagle, Jr., C. C. Carroll, and J. W. Jones, "A Hybrid
Realization for Sampled-Data Controllers,”" IEEE Transactions on
Education, Vol. E-13, No. 1, pp. 31-37; July, 1970.

H. T. Nagle, "Digital Filter Implementations for Sampled-Data
Control Systems," (INVITED PAPER) Proceedings of the 15th Mid-
west Symposium on Circuit Theory, Denver, Colorado; 6-7 May, 1971.

R. White and H. T. Nagle, Jr., "Digital Filter Realizations

Using a Special-Purpose Stored-Program Computer," IEEE Transactions
on Audio and Electroacoustics, Vol. AU-20, October, 1972, pp. 289-
294.

[13]

[14]

{15]

[16]

[17]

(18]

[19]

[20]

(21}

{22]

(23]

[24]

[25]

3-126

H. T. Nagle, Jr., and C. C. Carroll, "Memory Sizing for Digital
Filters," Proceedings of the IFIP Congress 71, Ljubljana,
Yugoslavia; 23-25 August, 1971.

H. T. Nagle, Jr., and M. M. Edgeworth, "Computer Aided Design of
Filters," TR#14, NAS8-20163, Marshall Space Flight Center,
September, 1971.

F. Kuo and J. F. Kaiser, System Analysis by Digital Computer, New
York, N. Y., John Wiley and Sons, Inc., 1966.

H. T. Nagle, Jr. and C. C. Carroll, '"Signal Amplitude Quantization
in Digital Filters," Second Hawaii International Conference on
System Sciences, Honolulu, Hawaii; 22-24 January 1969.

H. T. Nagle, Jr., "An Introduction to Digital Filtering," Course
Notes, Auburn University Short Course on Digital Systems and
Filters, Huntsville, Alabama; 8-12 September 1969.

L. B. Jackson, J. F. Kaiser, and H. S. McDonald, "An Approach to
the Implementation of Digital Filters,'" IEEETAU, Vol. AU-16, No. 3,

September, 1968, pp. 413-421.

Series 4000 Programmable Digital Filters Specifications Sheet,
Rockland Systems Corp., Blauvelt, N. Y.

Array Transform Processor Specifications Sheet, Raytheon Computer,
Santa Ana, California.

Fast Fourier Transform Analyzer Specifications Sheet, Unigon
Industries, Plainview, N. Y.

D. B. Kimsey and H. T. Nagle, Jr., "Digital Filter Implementation
by Minicomputer," Proc. IEEE Region 3 Convention, April 10-12,
1972, pp. C3-1, C3-4.

B. C. Kuo, Analysis and Synthesis of Sampled-Data Control Systems.
Englewood Cliffs, N. J.: Prentice Hall, 1963.

Y. Chu, Digital Computer Design Fundamentals, New York, N. Y.,
McGraw-Hill Book Company, Inc., 1962,

C. S. Wallace, "A Suggestion for a Fast Multiplier," IEEE Trans-
actions on Electronic Computers, Vol. EC-13, January 1965,

pp. l4-17,

[26]

[27]

3-127

L. Mattera, 'Digital Filters with LSI Promise; A New World of
Applications," Electronic Design, January 1971, pp. 24-26.

B. Gold, I. L. Lebow, P. G. McHugh, C. M. Rader, '"The FDP, a
Gast Programmable Digital Processor," IEEE Transactions
on Computers, Vol. C-20, January, 1971, pp. 33-38.

